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FOCUS TOPIC: MATERIALS INFORMATICS
Materials informatics is changing materials science 

completely. Data science and machine learning acceler-
ates analysis, simulation, design and discovery of materi-
als.  Our 15th MRD newsletter highlights some of MRD’s 
research in this quickly evolving field.

Like all previous newsletters, this 15th issue is acces-
sible through the MRD website. We are looking forward 
to receiving feedback on our newsletter and we welcome 
suggestions for the next issues.

Enjoy reading, 
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The main mode of communicating new scientific 
knowledge was and still is the academic peer-re-
viewed paper. Data is presented in various forms: 
micrographs, functional dependencies (x/y plots), 
photographs, etc. Knowledge is communicated by 
providing an introductory context in written form 
with references to other papers, a presentation 
of the used equipment, materials, and methods 
(reproducibility), and the resulting measurements 
including their description (results), again in text 
form, typically followed by a discussion that ex-
tracts principles, relationships and provides gener-
alizations. Finally, the most important findings and 
their consequences are concluded and possible lim-
itations are stated. This is one of the best ways (we 
know of) to communicate knowledge to humans. 
The knowledge is, however, not machine-readable 
in general. “Machine-readable” refers to the possi-
bility of (semi-)automated access to the data and 
contained knowledge through algorithms querying 
a data source.

The Collaborative Research Centre (CRC) 
Transregio 103 “From atoms to turbine blades – a 
scientific basis for a new generation of single crys-
tal superalloys” [1] is currently in its last funding 
phase. Results from more than a decade of re-
search are already published in more than 300 
papers with more to come. This body of literature 
constitutes the scientific output of the CRC, acces-
sible to humans. Links between the papers exist 
through citations, but the actual knowledge from 
these papers is not linked and not machine-read-
able and, therefore, less accessible to further 
scrutineering. To create a knowledge graph of the 
accumulated knowledge, we present one step in 
the digitalization process of the knowledge using 
already published experimental work.

A knowledge graph consists of the data itself 
and a data model (ontology) which defines how in-
dividual data are connected. This knowledge graph 
can then be queried with computers for analytics 
(How many measurements exist for a given alloy? 
Are there connections between measurements that 
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have not been exploited?) but also serves as an en-
try point for further analysis to infer hidden latent 
knowledge through various Materials Informatics 
methods. As a first step towards the creation of a 
full knowledge graph of all the papers published 
in the CRC, we devised a protocol to formalize the 
knowledge contained in Scholz et al. [2] through a 
paper-specific ontology. The figure shows shows 
the developed ontology. It includes bibliographic 
information, chemical composition, all described 
processes for sample preparation, and finally the 
analysis process which led to the published results 
and conclusions. The result of this protocol is a 
digital representation of the data and, most impor-
tantly, how this data was obtained (metadata) by 
Scholz et al. [2]. But for a knowledge graph to be 
useful for Materials Informatics approaches, it has 
to contain the knowledge of many more papers.

Our current protocol requires a substantial 
amount of manual work to read the paper, structure 
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the information, and translate it into an ontology. 
This manual process is very instructive but does 
not scale to the over 300 articles published in the 
context of the CRC. Two solutions are required in 
the future for knowledge representation. One for 
already published work, as demonstrated here, and 
one for the future publication of findings. The for-
mer involves the development and deployment of 
tools from the field of natural language process-
ing and text-parsing tools to automate the extrac-
tion of information from text-based data [3]. This 
allows to automatic processing of knowledge in 
text form which can then be included in an existing 
knowledge graph. The latter requires fundamental 
changes in how data is (experimentally) recorded 
and annotated through digital event logging, elec-
tronic lab notebooks, as well as a research data 
management system [3] and is a work in progress 
in many communities in Materials Science and En-
gineering.
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MICROSTRUCTURE  
INFORMATICS

Quantitative characterization methods of mate-
rial microstructures represent important tools in 
materials science. A solid understanding of micro-
structural features is required to develop suitable 
models which help to understand the relations 
between manufacturing, morphology and perfor-
mance of engineering materials. In recent years, 
the capability and reliability of advanced com-
puter vision techniques has drastically improved 
[1]. Artificial neural networks, as well as machine 
and deep learning approaches have proven their 
potential in different fields of science, e.g. in ap-
plications for autonomous driving cars [2]. Similar 
methods can be adapted for quantitative image 
analysis in material scientific projects where they 
can be used to automatically characterize differ-
ent types of microstructures with an accuracy 
that outperforms classical algorithmic computer 
vision approaches [3].

One interesting use case for automatic image 
analysis based on deep learning techniques is the 
3D characterization of dendritic microstructures 
in single crystal nickel based super alloys. Direc-
tional solidification is a key processing technique 
for today’s superalloys. The evolution of the cast 
microstructure is accompanied by the competitive 
growth of dendrites, leading to the formation of 
crystal mosaicity. Crystal mosaicity is character-
ized by small misorientations between neighbor-
ing dendrites. During solidification, interactions 
between growing dendrites (e.g. extinctions of 
primary or branching of tertiary dendrite arms) 
determine the morphology of the cast microstruc-
ture and can thereby influence the high tempera-
ture creep and fatigue resistance of the material.

To gain a better understanding of the geometri-
cal details of the interactions and how they affect 
the as-cast microstructure, a three-dimensional 

Automatic Characterization of Material Morpholo-
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characterization process is required, where indi-
vidual dendrites are traced over a certain distance 
of solidification [4]. For this purpose, we devel-
oped an automatic characterization routine with 
four characteristic features: (1) A tomographic 
serial sectioning procedure, where equidistant 
cross-sections are first cut out of the cylindrical 
single crystalline specimen and then character-
ized by optical microscopy. (2) A deep learning 
object detection architecture consisting of a clas-
sifier and a subdetection network, which locates 
the coordinates of the primary dendrite arms, Fig. 
1a. (3) An image registration routine based on an 
iterative closest points algorithm to reconstruct 
the 3D growth paths of dendrites in space, Fig. 1b. 
And (4), a 3D dendrite specific data base capturing 
all geometric properties and interactions between 
the dendrites, Fig. 1c. In this way we effective-
ly created a digital twin of our dendritic sample 
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which can now be used to extract morphological 
information in an automated fashion. This allows 
us to investigate interactions between multiple 
dendrites as well as interactions between den-
drites and the mold wall during solidification, Fig. 
1d. Furthermore, overall statistical properties of 
the complete dendrite population in terms of the 
evolution of dendrite spacings, the frequency of 
extinctions and branching events and the effect 
of misaligned dendrites on their surroundings, can 
be extracted. This approach allows for an efficient 
automatic exploration of microstructural proper-
ties and sets us up for future utilization in terms of 
big data mining.

Figure 1: Architecture of a deep-learning assisted 
automatic 3D dendrite characterization method.
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USING CONVOLUTIONAL  
NEURAL NETWORKS FOR 

FAST AND RELIABLE MICRO-
STRUCTURAL ANALYSIS
Exemplified by Textures of Solidification 

Structures in Powder Samples

Figure 1: Proposed automatic characterization scheme.
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At the Chair of Materials Technology (LWT), we 
dissect the relationships that permeate and define 
material selection and design. Correspondingly, 
the observation, description, and ultimate predic-
tion of causal connections between processing 
and emerging macroscopic properties stand at 
the heart of our activities. This exercise is deduc-
tive and traditionally bases all associations on 
physical parameters and their interpretation. For 
instance, we routinely investigate the effects of 
manufacturing variables on the resulting mechan-
ical properties, such as hardness, toughness, or 
fatigue life. To that end, the microstructure is the 
subject of intense examination, as it is ultimately 
responsible for the observed emergent behavior. 
Many of the scientific or technical questions that 
we strive to answer boil down to quantitatively 
studying the—sometimes subtle—effects of pro-
cessing on the microstructure in terms of known 
or hypothesized thermodynamic and kinetic phe-
nomena. Then, we scrutinize the microstructure 
as the thermomechanical interaction of its mi-
croconstituents to explain observed or expected 
measurable macroscopic properties.

Incorporating Data Science and Informatics 
into the rigorous framework of Materials Science 
and Engineering is the quintessence of Integrated 
Computational Materials Engineering and Materi-
als Informatics. In Materials Engineering, the chal-
lenge lies in developing information-based prin-
ciples that emphasize physical meaning. In other 
words, technological applications set feasibility 
boundary conditions that cannot be circumvented. 
Data-based methods require careful adaptation 
and implementation to ensure applicability and 
relevance in application-oriented research.

In this short article, we present one of our ef-
forts toward increasing speed and reliability in 
repetitive microstructural analysis tasks through 
machine learning. Microstructural characteriza-
tion represents a prime candidate activity because 
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of three reasons: Firstly, micrographs are nothing 
other than data arranged in matrices. Secondly, 
large imaging campaigns produce heaps of imag-
es. And, thirdly, we can embed these automatic 
analyses directly in existing workflows without 
ever straying from standard physical descriptors.

Figure 1 presents the proposed approach. In a 
nutshell, we trained a convolutional neural net-
work (CNN) to recognize the textures of the so-
lidification structures in powder samples of the 
high-speed steel PM HS 3-3-4, depicted in Figure 
2. Due to the extreme cooling speeds of the small-
est steel droplets, they solidify into the very fine 
cellular microstructure exemplarily displayed in 
Figure 2(a). In contrast, Figure 2(b) shows a more 
massive droplet with regular eutectic solidifica-
tion and the corresponding eutectic carbides. Tell-
ing these mechanisms apart is technologically 
relevant because they produce distinct carbide 
morphologies when the powder is processed in 
the hot isostatic press to a semi-finished product 
[1]. To complement the CNN, we added the parti-
cle segmentation and tiling steps and included a 
voting algorithm that democratically decides the 
solidification mechanism based on the decision on 
the individual tiles. These processing stages are 
detailed in Figure 1(a)-(c). With the trained CNN ar-
chitecture in Figure 1(d), we are able to automat-
ically ascribe each of the 1500 powder particles 
in one square millimeter area to either category 
in a matter of minutes. In Figure 2(e), we present 
a use case. We expanded each segmented parti-
cle’s property list to include its equivalent area 
diameter besides the solidification structure. With 
the help of a three-dimensional size recovery al-
gorithm [2], we could reproduce the trends pub-
lished in [1] in a fraction of the original time.

At LWT, we actively explore original ways to 
generate new knowledge and efficiently improve 
existing exercises. As stated above, this brief ac-
count serves as an example.

Figure 2: Characteristic microstructural solidification structures of the PM HS 3-3-4 powder droplets.
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ATOMISTICS MEETS  
STATISTICS

The evolution of a metallic or multiphase mi-
crostructure during solidification or mechanical 
deformation largely depends on the structure and 
energy of the interfaces in the material. So do the 
resulting macroscopic properties, like the deform-
ability, thermal stability, and strength. Conse-
quently, substantial scientific effort is made to 
investigate grain boundary properties, and a val-
uable tool to do so are high-throughput atomistic 
simulations.

Nowadays high-throughput numerical simu-
lations are standard in materials development, 
because they allow a systematic variation of ma-
terial or process parameters. The most common 
approach to cover a broad range of these parame-
ters in a short time is based on a regular, i.e. equi-

An Efficient Sampling of the Grain 
Boundary Parameter Space

distant sampling of the parameter space, which 
keeps the automatisation of the workflow fairly 
simple. It has limited use however, when the prop-
erties of interest depend on several variables at 
the same time, i.e. a multidimensional parameter 
space has to be sampled, and the property of in-
terest does not vary homogeneously in this space. 
This is the case for the energy of grain boundaries, 
which depends on the five macroscopic geometric 
degrees of freedom of the interface, defined by the 
rotation axis and angle and the inclination of the 
grain boundary plane, and exhibits deep local min-
ima, so-called cusps. 

For such cases a sequential design of experi-
ment (DOE) can be beneficial, during which the 
next points in the parameter space to be sampled 

Figure 1: Overview over sequential design of experiment scheme.
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are chosen based on the already available data 
[1,2] (see Figure 1).

The first important building block of the nu-
merical recipe is the atomistic representation and 
optimisation of the grain boundary structure start-
ing from the macroscopic degrees of freedom, and 
the calculation of the grain boundary energy. If the 
sampling scheme shall be valid for the complete 
5D parameter space, including small angle and 
other general grain boundaries, the main chal-
lenge is to realise such a calculation without pe-
riodic boundary conditions. This can be achieved 
by using a spherical sample. The two half-spheres 
can be cut and oriented to represent any desired 
combination of misorientation axis, rotation an-
gle, and plane inclination. By evaluating only the 
atoms in the interior of the sphere, surface effects 
are excluded. 

After creating a first set of structure-energy 
data with atomistic simulations, a suitable inter-
polation method is required. The so-called Kriging 
(also referred to as Gaussian process regression 
in the presence of noisy observations) predicts the 
value of a function at a given point by computing 
a weighted average of the already determined 
values of the function in the neighborhood of the 
point. This approach is related to a regression 
analysis, but Kriging exactly interpolates through 
the existing observations. Furthermore, it pro-
vides a natural measure of uncertainty quanti-
fication for predictions at potential locations. In 
the sequential design, this information is used to 
create a list of candidate points for new sampling 
locations from the regions where the uncertainty 
is maximal. In these regions the points with the 
maximum expected variance compared to their 
neighbors will be chosen, in other words, points 

which are expected to be on a steep slope in the 
energy landscape. 

A typical sequence of experiments for a one-di-
mensional example – the energy of symmetrical 
tilt grain boundaries as a function of misorienta-
tion angle – is shown in Figure 2. It demonstrates 
the advantage of the sequential design, namely 
that cusps which are not included in the initial data 
are identified by the algorithm after a few steps 
only. This is particularly advantageous for more 
complex subsections of the 5D parameter space. 
As an example, Figure 3 shows the energy for dif-
ferent inclinations of the plane (given by the two 
angles that define the normal vector of the plane) 
of a small-angle grain boundary. The energy mini-
ma in such a subspace cannot be easily predicted 
from crystal symmetry, but are revealed by the 
DOE algorithm. The underlying strategy will be 
advantageous for any application with strong, lo-
calized fluctuations in the values of the unknown 
function.

Figure 2: Sampling the energies a sym-
metrical tilt grain boundaries.

Figure 3: Funda-
mental zone of 
grain boundary 
energies of a low 
angle grain bound-
ary with different 
boundary plane 
inclinations.
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THREE-DIMENSIONAL  
MICROSTRUCTURE  
RECONSTRUCTION FROM 
SURFACE EBSD MAPS

The characterization of three-dimensional (3D) 
microstructures that captures the essential fea-
tures of a given material is oftentimes desirable 
for determining critical mechanisms of deforma-
tion and failure and for conducting computational 
modeling to predict the material’s behavior under 
thermo-mechanical loading conditions [1]. How-
ever, acquiring 3D microstructure representations 
is costly and time-consuming because standard 
microscopic procedures can only produce 2D sur-
face maps. Hence, current state-of-the-art meth-
ods for 3D microstructure characterization are 
serial sectioning techniques or X-ray tomography. 
Both methods produce a truthful characterization 
of the 3D structure of an individual specimen but 
require a rather high effort both in sample prepa-
ration and in software-based reconstruction of the 
3D structure. In this work, an alternative path is 

Reducing Effort by Micromechanical Simulations

suggested to generate synthetic 3D microstruc-
tures that resemble real ones in a statistical sense 
with a severely reduced effort, as only 2D surface 
maps from three orthogonal surfaces are used. 
The method is based on an inverse procedure 
that generates synthetic 3D microstructures with 
arbitrary parameters and then compares these 
artificial surface maps with the real ones. In an 
iterative procedure, the parameters of the micro-
structure generator are optimized until the best 
possible agreement between the corresponding 
surface maps of synthetic and real microstruc-
tures is achieved. In this way, the statistical de-
scriptors of the real microstructure are gained 
as they are represented by the converged input 
parameters for the microstructure generator. Ad-
vantages of this method are that, after the con-
verged microstructure parameters are obtained, 

Figure 1. Representation of work-
flow to reconstruct 3D microstruc-
tures from surface maps. 
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different realizations of statistically equivalent 3D 
microstructures can be generated and also sys-
tematic parametric can be conducted by varying 
individual microstructure features. In this way, the 
influence of microstructure features on the mate-
rial properties can be predicted by micromechani-
cal simulations [2]. 

The work presented here focuses on micro-
structures of metastable austenitic steels where 
austenite and deformation-induced a-martensite 
co-exist at room temperature. The microstruc-
ture of this dual-phase steel is characterized by 
electron backscatter diffraction (EBSD) micros-
copy to produce three maps from orthogonal sur-
faces. The 3D microstructure reconstruction is 
performed in the way described above based on 
three EBSD maps from orthogonal surfaces of a 
dual-phase steel sample. As illustrated in Figure 
1, the workflow for such reconstructions incor-
porates a microstructure generator tool from the 
open-source python package pyMKS to produce 
synthetic 3D dual-phase microstructures based on 
physical parameters, such as volume fraction and 
phase shape [3]. The input in Figure 1 is represent-
ed by three EBSD maps from orthogonal surfaces 
of a dual-phase steel (yellow: martensite, blue: 
austenite) from which a low-dimensional, yet rep-
resentative vector of descriptors is extracted. The 
corresponding descriptors are generated from a 
synthetic 3D microstructure (red: austenite, blue: 
austenite) such that a scalar loss function can be 
evaluated to assess how similar the surface maps 

of real and synthetic microstructures are. In an 
iterative procedure, the parameters of the 3D mi-
crostructure generator are optimized such that the 
loss function becomes minimal. From the surfac-
es of the synthetic microstructure, 2D images are 
produced similarly to the surface maps of the real 
material. The primary challenge in minimizing the 
differences between real and synthetic surface 
maps lies in defining a proper loss function that 
quantifies the differences between surface maps 
in a physically sound yet numerically efficient 
way. In the present work, it is demonstrated that 
processing surface maps by spatial correlation 
functions, often referred to as 2-point statistics, 
and principal component analysis (PCA) results in 
a small set of unique descriptors that serve as a 
fingerprint of the 2D maps [4]. These descriptors 
encode the topological information of 2D maps in 
a compact format and can be used to characterize 
both experimental and synthetic surface maps. In 
this way, the differences between the two surface 
maps can be quantified and iteratively minimized, 
as seen in Figure 2. After convergence, the syn-
thetic 3D microstructure accurately describes the 
experimental system in terms of physical param-
eters such as volume fraction (here: 15% austen-
ite) and phase shapes (here: aspect ratio of 20:4:3 
for martensite regions). Hence, the presented ap-
proach ensures that the 3D reconstructed sample 
and the associated 2D surface maps are statisti-
cally equivalent. 
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Figure 2. (a) Evolution of loss function during optimization 
procedure and (b) final synthetic 3D microstructure mimick-
ing the experimental surface slides in an optimal way.
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ATOMIC CLUSTER EXPANSION 
FOR LARGE-SCALE ATOMISTIC 
SIMULATIONS WITH QUANTUM 
ACCURACY

Electronic structure calculations have become a 
valuable tool for materials research and nowadays 
take a prominent place in many research projects. 
However, their high computational cost still pre-
sents a major limitation and simulations for only 
a few hundred atoms and picosecond time scales 
require access to supercomputers. This limits 
modeling of many important phenomena in mate-
rials science, chemistry, physics, and biology, for 
instance, predictions of phase diagrams and phase 
transformations, behavior of extended defects, 
diffusion, material degradation, etc. To be able to 
simulate these phenomena one has to invent ef-
fective interaction potentials that mimic closely 
the energies and forces from electronic structure 
calculations, but at a much lower computational 
cost. By adopting methods from machine learn-
ing (ML) and data science, tremendous progress 
could be achieved in recent years. To construct a 
ML interatomic potential, one starts by carrying 
out large numbers of automated high-throughput 
density functional calculations (DFT), typically 
for tens of thousands of different structures. The 
DFT database is then used to train the ML poten-
tial by varying its parameters to match the ref-
erence data as closely as possible. After careful 
validation, the ML interatomic potential is ready 
for large-scale simulations with millions of atoms 
and simulation times of nanoseconds.

Learning the interaction between atoms
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We have recently developed the Atomic Clus-
ter Expansion (ACE) [1] and demonstrated that 
it shifts previously established limits of ML in-
teratomic potentials towards more accurate and 
numerically more efficient simulations [2]. The 
method is general and suitable for most elements 
and compounds across the periodic table. Efficient 
implementations for CPU and GPU hardware are 
available from ICAMS and have already been in-
corporated in prominent simulations codes, such 
as LAMMPS [2,3]. 

Figure 1 illustrates a long time-scale simula-
tion of nucleation and growth of carbon fullerenes 
[4]. Initially, carbon atoms are distributed random-
ly in an argon atmosphere under high pressure and 
at high temperature. Forces between the atoms 
are predicted by ACE and the acceleration is in-
tegrated into a trajectory for each atom. From left 
to right, one first observes the nucleation of small 
carbon clusters that gradually coalesce and form 
fullerene molecules. At the end of the simulations 
only a single large fullerene molecule remains. 
The same ACE potential that predicts fullerene 
formation and growth can be used for diverse sim-
ulations of amorphous carbon, crack propagation 
in diamond, or defects in graphene, thereby pro-
viding a simulation tool that is able to cross the 
boundaries between materials science, chemistry, 
physics and biology. 

Figure 1.  Nucleation and growth of fullerences in an argon atmosphere. 
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