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Atomistic simulation builds on fundamental physical 
laws for the prediction, analysis and design of materials 
and their properties. Atomistic simulation is universal, 
applicable across disciplines and a cornerstone of re-
search in materials science, chemistry and biology. 

The present newsletter showcases atomistic simula-
tion in the Materials Research Department and highlights 
the strength and breadth of MRD research in this area.

Like all previous newsletters, this 17th issue is also 
accessible through the MRD website at www.mrd.rub.de.

Enjoy reading, 
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Properties of liquids at interfaces and in con-
finement are different from those in bulk and are 
relevant to a series of phenomena of natural and 
technological interest. Water interfaces are key 
to atmospheric and geochemical processes, while 
confined electrolyte solutions and confined ionic 
liquids (IL) play a crucial role in energy devices. A 
microscopic, atomistic understanding of solid/liq-
uid interfaces is therefore crucial to advance both 
our fundamental understating of natural phenom-
ena, as well as to improve technological devices. 

LIQUIDS IN
METALLIC 
NANOCON- 
FINEMENT
Structure, 
dynamics and 
thermodynamics 
from atomistic 
simulations

On the cover: Simulations of liquid water 
on hexagonal ice, Eslam Ibrahim
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Molecular dynamics simulations, at atomis-
tic resolution and at different level of theory, can 
provide a dynamical picture of interfaces “in oper-
ando” and help the microscopic interpretation of 
experiments.

In this short contribution I would like to high-
light some recent work from our group on atom-
istic simulation of metal/liquid interfaces at the 
nanoscale. Peculiar to these systems is the role 
of electronic polarization which needs to be ac-
curately included in the simulations. 

We have recently developed a simple method 
to introduce metal polarization in atomistic sim-
ulations, where harmonically coupled core-shell 
charge pairs are combined to Lennard Jones 
potentials on each metal atom. Such approach 
proved accurate in reproducing image charge 
potentials, compatible with atomistic simu-
lations packages and inexpensive, so it can be 
used on large scale simulation containing hun-
dred thousands atoms [1].

We have used this approach to investigate IL 
confined between gold electrode and observed 
quite some interesting phenomena. For exam-
ple, we have shown that although structural 
modifications affect the interfaces only for a 
couple of nanometers, dynamical properties 
are instead modified on much longer scale, and 
e.g. bulk diffusion is only recovered 10 nm away 
from the gold surface [2]. Simulations also per-
mitted to compute interfacial free energy and 
to evaluate the impact of the metallic polari-
zation on the shift of the freezing temperature 
in confinement. Extending the simulation to the 
non-equilibrium realm, we have also investigat-

ed the impact of shear flow on the same type of 
systems, finding that the portion of fluid closer 
to the metal surface behaves as a glassy solid, 
which extends for a few nanometres. An analy-
sis of friction showed that, thanks to the strong 
interaction with the surface, the confined IL re-
sists the “squeeze out” and remains in place at 
higher pressures [3]. We have also shown, for 
different electrolyte solutions, that the metal 
polarisation enhances the interfacial capaci-
tance with differences between the cathode and 
anode, depending on the ion’s size and solvation 
shell structures [4]. 

To explicitly consider reactivity, a descrip-
tion which also includes the electronic structure 
is required, as in ab initio molecular dynamics 
simulations. Electronic structure-based simula-
tions permit to describe chemisorption at inter-
faces, as well charge transfer, also as function 
of a variable interfacial potential. In our recent 
work [5] we used ab initio molecular dynamics 
simulations in combination with the charge un-
balance method to obtain the atomistic struc-
ture of the Pt-water double layer in response to 
an applied potential, in realistic solution condi-
tions. The simulations permitted to evaluate the 
interface capacitance and the absolute elec-
trode potential for different values of the charge 
on the electrodes. We showed that the metal 
polarisation is responsible for interfacial charge 
transfer and oscillations, which modulate the 
water coverage at the surface and in turn the 
interface dipole. Our results pave the way to the 
development of realistic models for catalytic 
processes at the Pt-water interface.
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Figure 1: Artistic view of the metal/electrolyte inter-
face. Metal polarization at the gold surface increases 
the binding energy of ions and water molecules and is 
responsible for the increased interfacial differential 
capacitance (cover image ISSN 1463-9076, Ref. [4]).
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Figure 1: Ternary phase diagram of La-
W-N, showing the perovskite phase of 
LaWN3 we discovered in 2015, Ref. [1].

COMPUTATIONAL DISCOVERY 
AND CHARACTERIZATION 
OF NEW INORGANIC
COMPOUNDS

Unleashing the power of 
computational high-throughput 
screening and machine learning 

Most of the experimental knowledge painfully 
accumulated over centuries concerning the crys-
tal structure of (inorganic) materials is nowadays 
gathered in databases. The most famous of these, 
the Inorganic Crystal Structure Database (ICSD) 
contains more than 250000 entries pertaining 
to around 50000 different compounds. Looking 
at these 50000 materials, the first question that 
comes to our mind is if this set is representative 
of the compounds that we can synthesize in a lab. 
The answer to this question is probably no. It is 
true that elementary substances and binary com-
pounds are relatively well studied, but present 
knowledge of ternary and multinary materials is 
far less complete. The second pertinent question 
is if these materials are sufficient for all desired 
technological applications of materials science. 
Unfortunately, the answer is certainly no. There 
are several areas where we do not know any ma-

terial with the desired properties, or sufficiently 
good materials are known but are composed of 
expensive, rare, or toxic elements. For example, 
we still do not have an industry-grade transparent 
p-type conductor that would enable completely 
transparent electronics, or a room-temperature 
transparent ferromagnet, or a room-temperature 
superconductor (or even an industry-friendly su-
perconductor at liquid nitrogen temperature).

The endeavor to experimentally synthesize 
and characterize all possible inorganic phases is 
a monumental and resource-intensive task. It is 
for this task that numerical simulations appear 
as the most cost-effective path to explore the 
gigantic search space of materials at our dis-
posal. In our group we follow this computational 
approach to discover new stable inorganic com-
pounds that may be used in energy-related tech-
nologies.
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Materials design has gained a game-chang-
ing tool with the advent of computational 
high-throughput screening of large sets of materi-
als. Using efficient and accurate numerical meth-
ods, such as density functional theory, promising 
stable compounds for synthesis can be identified 
and used as a guideline for experimental efforts. 
Unfortunately, these calculations are costly from 
the numerical point of view, which limits the num-
ber of materials to be investigated to the tens of 
thousands. This problem can be circumvented by 
the use of machine learning methods, that in recent 
years have drastically accelerated the process of 
discovering and characterizing new materials. In 
fact, new developments in neural networks, and 
in particular crystal-graph neural networks, now 
allow for speedup-factors of at least two orders of 
magnitude in the search for new compounds.

Using these techniques, we have constructed 
databases containing tens of thousands of novel 
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Figure 2: Diversity of structures obtained in our search of two-dimensional compounds.  We found examples that can be built by decorating 
nearly all Platonic and Archimedean tesselations as well as their dual Laves or Catalan tilings, Ref. [2].

compounds, some with unique physical proper-
ties. An example are nitride perovskites, that we 
predicted in 2015 [1] and that were synthesized 
in 2021 with interesting piezoelectric and ferro-
electric properties. Another interesting example 
are two-dimensional systems, where our method-
ology unveiled an unexpected structural richness. 
In fact, we could find two-dimensional layers con-
structed from nearly all Platonic and Archime-
dean tesselations as well as their dual Laves or 
Catalan tilings.

The marriage of traditional computational 
methods and machine learning has opened ex-
citing avenues for materials design, providing us 
with powerful tools to uncover novel compounds 
and push the boundaries of what is possible in the 
realm of materials science. These advances hold 
great promise for addressing pressing technologi-
cal challenges and continue to shape the future of 
materials research.

Prof. Dr. Miguel 
Marques
Artificial Intelligence 
for Integrated Material 
Science, Research 
Center Future Energy 
Materials and Systems 
miguel.marques@
rub.de
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ATOMISTIC SIMULATIONS
WITH HIGH-DIMENSIONAL
NEURAL NETWORK 
POTENTIALS

Today, computer simulations are the key to ad-
vances in many fields, from chemistry via physics 
to materials science, because they can provide 
important atomic-level information complement-
ing experimental data. The reliability and predic-
tive power of these simulations crucially depend 
on the quality of the description of the atomic 
interactions, which determine the properties and 
reactivity of molecules and materials. While accu-
rate electronic structure methods can in principle 
provide these interactions directly based on the 
laws of quantum mechanics, the computational 
costs of such calculations are prohibitively high 
and applications are restricted to small systems 
even when the most powerful supercomputers are 
used. Simple empirical force fields, on the other 

hand, have been successfully used for decades to 
study large systems containing thousands of at-
oms, but they lack the required accuracy for highly 
reliable simulations and in some cases can yield 
even qualitatively incorrect predictions.

Since about two decades we are working on 
the development of methods to overcome this 
dilemma by combining modern machine learning 
algorithms with quantum mechanical electronic 
structure calculations with the aim to “learn” the 
atomic interactions, i.e., the shape of the potential 
energy surface. The resulting machine learning 
potentials are able to provide the multidimen-
sional potential energy surface, which contains 
all information about the atomic interactions, at 
strongly reduced computational costs while the 

Using machine learning in molecular 
dynamics simulations of complex 
systems
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Figure 1: Simulation of a solid-liquid interface between water and the lithium intercalation compound LiMn2O4, Ref. [4] 
(figure courtesy of Nikolas Lausch).
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reliability of quantum mechanics is maintained. 
In this way they allow to perform predictive mo-
lecular dynamics simulations beyond the system 
size that is accessible by conventional ab initio 
molecular dynamics. An important step in the 
development of machine learning potentials for 
complex condensed systems has been our devel-
opment of high-dimensional neural network po-
tentials in 2007 [1, 2], which can now be termed 
second-generation machine learning potentials 
[3]. The key idea of these potentials is to represent 
the total potential energy of a system as a sum 
of environment-dependent atomic energies. The 
local geometric environments need to be trans-
formed to a set of translationally, rotationally and 
permutationally invariant features that are suita-
ble as input for neural networks. To achieve this 
goal, we have developed so-called atom-centered 
symmetry functions [1], which meet all these 
requirements. However, for some systems also 
long-range electrostatic interactions beyond the 
local atomic environments are important, which 
can be explicitly included in third-generation 
high-dimensional neural network potentials [3]. 
Here, the atomic partial charges are learned by 
atomic neural networks as a function of the chem-
ical environment. In a second step they can then 
be used to compute the long-range interactions 
without truncation based on Coulombs law. In the 
fourth generation of high-dimensional neural net-
work potential, a global charge equilibration step 
is employed to determine the global charge distri-
bution in the system. This enables the inclusion 
of non-local phenomena like long-range charge 
transfer, which is omnipresent in many molecules 
and materials. Thus, over the years, the capabili-
ties of machine learning potentials, which are now 
a very active field in the area of atomistic simula-
tions with many different and very accurate meth-
ods being constantly proposed, have substantially 
grown and step by step the complexity of systems, 
which can be studied with first principles accura-
cy, has been extended.

Apart from our focus on method development, 
in our group we have applied high-dimensional 
neural networks to many different types of sys-
tems including materials like silicon, carbon and 
copper, but also oxides like zinc oxide and met-
al-organic frameworks. As part of the cluster of 
excellence RESOLV, we are particularly interested 
in aqueous systems, like liquid water and elec-
trolyte solutions, but in particular also solid-liq-
uid interfaces, which are of central importance 
for catalysis and electrochemical energy storage 
and conversion. An example is the solid-liquid 
interface of the lithium intercalation compound  
LiMn2O4 depicted in Figure 1, which is of interest 
for catalytic water splitting. 

Recently, in November 2022, our group has 
moved to Ruhr-Universität Bochum, to establish 
the new Chair for Theoretical Chemistry II as part 
of the Research Center Chemical Sciences and 
Sustainability of the Research Alliance Ruhr. We 
are now looking forward to many fruitful collab-
orations in the very dynamic and active research 
environment in the Ruhr area, which offers a plen-
ty of opportunities to further improve and apply 
our methods.
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PREDICTING ELECTRONIC 
PROPERTIES OF FUNCTION-
AL INTERFACES THROUGH 
COMPUTATIONAL
SIMULATIONS

Figure 1: Atomic 
structure and 
local density 
of electronic 
states of SGO on 
a Si substrate, 
calculated with 
a modified hybrid 
density functional, 
Ref. [3].

Interface-controlled technologies 
for electronic devices

The core functionality of electronic devices, 
spanning from transistors and solar cells to sen-
sors and light-emitting diodes, relies on precise 
control of electron dynamics at interfaces be-
tween distinct materials. For example, within a 
photovoltaic cell, incident light energy excites an 
electron-hole pair, necessitating efficient separa-
tion to produce an external current. Such a pro-
cess is typically aided by a potential gradient or 
appropriate alignment of energy levels at an inter-
face.

Manipulating and shaping potential gradients 
at interfaces presents a unique opportunity to 
guide electrons and pioneer new technologies. At 
the Research Center for Future Energy Materials 
and Systems, our group has embraced this chal-
lenge, focusing on the development and applica-

tion of computational materials modeling to ener-
gy materials. Our goal is to facilitate the creation 
of enhanced electronic and quantum materials by 
constructing heterostructures with specific func-
tionalities for energy production, storage, and sav-
ing.

However, understanding and mastering the in-
tricate physics of interfaces still pose significant 
challenges, both experimentally and theoretically. 
On the theoretical front, state-of-the-art methods 
relying on density functional theory (DFT) can be 
either unreliable or too computationally intensive 
to evaluate the electronic band structures of com-
plex interfaces in energy devices. To tackle this 
issue, we recently optimized two density function-
als explicitly for computing electronic and optical 
properties of interfaces and two-dimensional ma-
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terials: a local hybrid [1] and a local meta-GGA 
functional [2]. Our functionals achieve the accura-
cy of more involved Green’s function methods while 
retaining the computational efficiency of standard 
DFT calculations. Consequently, our methods are 
tailored to enable predictive high-throughput cal-
culations of the spectral and transport properties 
of various functional interfaces.

As an example, we demonstrate the investiga-
tion of the suitability of an epitaxial layer of stron-
tium germanate (SGO) on a silicon (Si) surface with 
(100) orientation as a photocathode [3]. Photocat-
alytic water splitting holds promise as a strategy 
for large-scale clean energy production. However, 
the lack of efficient and low-cost solid-state pho-
tocatalysts remains a challenge. Our calculations 
confirm a type-III band line-up of energy levels at 
the interface (Figure 1). We observe that both re-
dox potentials reside within the local band gap of 
SGO and below the Fermi energy of the supercell. 
Consequently, photogenerated electrons from the 
Si bulk reaching the SGO-capped surface are an-
ticipated to traverse the interface and partake in 
water reduction. We conclude that the thin SGO 
layer, with a partially occupied lowest conduction 

band, would function as a metallic electrode in the 
system.

In collaboration with experimental groups, we 
are currently engaged in several projects that in-
volve extensive calculations across various types 
of interfaces. To maximize the value of these ef-
forts, we are aggregating the resulting valuable 
data into an open-access materials database, the 
NOMAD Lab, developed by the FAIRmat NFDI con-
sortium [4]. In the near future, our aim is to lever-
age artificial intelligence to meticulously analyze 
and extract critical patterns from this data. This 
analysis will enable us to construct predictive 
models for interface design, aiding in the identifi-
cation of essential structural and chemical char-
acteristics for specific functionalities at the inter-
face [5].

Our endeavor encompasses not only the accu-
mulation of calculations for interfaces but also the 
advancement of machine learning models to pre-
dict properties across a broader spectrum of in-
terfaces. This data-centric approach shows great 
promise in guiding the future trajectory of inter-
face design and promoting sustainable research 
practices.
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Figure 2: Schematic rep-
resentation of the band 
edges of the SGO/Si sys-
tem extracted from the 
local density of states of 
Figure 1, plotted together 
with the redox potentials 
of water splitting reac-
tions, Ref. [3].
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Strengthening of metals by incorporating 
nano-scale twin boundaries is one of the impor-
tant approaches of recent years to overcome the 
strength-ductility trade-off of metals and metal-
lic alloys. To this effect, also nano-lamellar mi-
crostructures of lightweight Ti-Al alloys prom-
ise a great potential, e.g. for high temperature 
applications. However, for designing optimal mi-
crostructures, the contribution of the interfaces 
to the overall deformation and fracture behavior 
needs to be better understood. Generally speak-
ing, interfaces in microstructures alter the me-
chanical properties due to their interaction with 
lattice dislocations and other interfaces via their 
stress fields. They can act as sink, barrier, or trap 
for lattice dislocations, but also as dislocation 
source. Unless they are perfectly coherent, inter-
faces exhibit misfit and/or compatibility stresses 
and are likely to nucleate cracks and alter crack 
paths. Last not least, especially at high temper-
atures and in interface-dominated microstruc-

tures, they can contribute to the plastic deforma-
tion by interfacial sliding and migration.

The dominant structures in two-phase lamel-
lar Ti-Al are γ-TiAl with a tetragonal L10 crystal 
structure, and the α2 -Ti3Al phase with a hexag-
onal DO19 lattice. These phases are arranged in 
parallel lamellae with a thickness of a few tens 
of nm up to some μm, depending on the compo-
sition and processing route. Three types of γ/γ 
(111)[111] twist grain boundaries exist, the true 
twin (TT; misorientation 180°), rotational bound-
ary (RB; 120°) and the pseudo-twin (PT; 60°). The 
γ and α2 phases are aligned such that the close 
packed planes and directions match, i.e. {111} γ 
|| (0001) α2 and <110] γ || <1120] α2 . There are 
6 possible variants formed by rotating the two 
phases around [0001] α2 and <111> γ respective-
ly, by multiples of 60°. Of all these interfaces only 
the TT is intrinsically coherent, all others exhibit 
coherency strains and/or misfit dislocation struc-
tures. 

INTERFACE EFFECTS
ON DEFORMATION AND 
FRACTURE IN FULLY 
LAMELLAR TI-AL ALLOYS

Figure 1: Crack advancement of a penny-shaped crack under tensile load. The crack was initiated in the vicinity of an 
interface, the position of which is marked by the red line. The crack advancement in an ideal γ-TiAl single crystal is 
shown for comparison. The interfaces are the intrinsically coherent γ/γ true twin (γ-TT C), the strained and coherent 
γ-TiAl/α2-Ti3Al interface (γ-α C), the partially relaxed and semi-coherent γ-α2 interface (γ-α2 PSC), and the semi-co-
herent γ-TiAl pseudo-twin (γ-PT SC). The diagram shows that the semi-coherent interfaces are effective in blocking 
the crack propagation. 

Identifying processes 
and interaction mechanisms

10 / MRD NEWS



To identify the relevant processes and inter-
action mechanisms in nano-lamellar Ti-Al alloys 
we have investigated deformation and fracture 
by means of large-scale atomistic simulations. 
Bicrystals, fully lamellar samples, as well as 
polycrystals were studied to clarify whether 
the different boundaries are effective and equal 
strengtheners, what is the role of the interface co-
herency in these processes, and which structural 
length scale dominates the deformation behavior, 
i.e. what are critical values for lamella thickness 
and lamella spacing to enable / suppress twin mi-
gration / dislocation motion. The simulations were 
carried out with a well established empirical po-
tential for the interatomic interactions [1] using the 
open-source software LAMMPS [2]. 

In a series of bicrystal studies of crack-inter-
face interactions with different loading scenarios, 
we observed that, although the crack-tip mecha-
nisms differ and there is a strong directional aniso-
tropy,  all internal boundaries increase the fracture 
toughness - in particular the semi-coherent ones. 
This can be seen e.g. from Figure 1, where the ad-
vancement of a penny-shaped crack in the vicinity 
of different interfaces is shown. Here the minimum 
advancement is observed for the interfaces la-
belled with SC (semi-coherent) or PSC (partially 
semi-coherent). An example of crack-tip blunting 
of an initially sharp, brittle crack at the pseudo-twin 
γ/γ interface is shown in Figure 2 (from [3]).

The role of the misfit dislocation network at 
semi-coherent interfaces was further investigat-

ed via computational tensile/compression tests 
[4, 5]. Among other things, we were able to show 
that e.g. at a semi-coherent γ/γ PT interface the 
misfit interfacial dislocations cause nucleation 
events, as exemplarily shown in Figure 3 (adapted 
from [4]). These events are responsible for lower-
ing the overall dislocation nucleation stress and 
cause localized or early plasticity. While this could 
be detrimental to the tensile strength of a lamellar 
sample, it does improve its fracture toughness by 
dissipating energy without further crack advance-
ment. The toughening effect as a function of lamel-
la spacing in a fully lamellar sample has two con-
tributions: The crack-initiation toughness, which 
exhibits a Hall-Petch type, “smaller is stronger” 
behavior, and the crack propagation toughness, 
which actually increases with increasing lamella 
spacing [6]. 

Summarizing, the spacing and the degree of lat-
tice misfit of/at lamellar interfaces in two-phase 
Ti-Al alloys represent two important material pa-
rameters, which can also be adjusted experimen-
tally e.g. by varying the processing route as well 
as the chemical composition. Tuning the lamella 
spacing provides the means to improve the frac-
ture toughness of a material, whereas the lattice 
misfit and the resulting coherency stresses govern 
dislocation nucleation at the interfaces. Last not 
least, such studies demonstrate how large-scale 
atomistic simulations can be employed to separate 
and analyze microscopic mechanisms which are 
otherwise hard to disentangle. 
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onur.sen@rub.de
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ashish.chauniyal@
rub.de
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Figure 2: Snapshot of an atomis-
tic simulation of crack tip blunt-
ing at the γ-TiAl Pseudotwin 
boundary. Green atoms are bulk 
γ-TiAl atoms, pink atoms mark 
the PT boundary and magen-
ta atoms the crack tip surface. 
Orange, blue and yellow atoms 
represent typical stacking faults 
and defect atoms in TiAl. The in-
itially sharp crack gets blunted 
and arrested at the PT boundary 
(adapted from Ref. [3]). 

Figure 3: Three snapshots of an atomistic simulation of a TiAl lamella, bordered by a PT interface, under strain. 
Atoms are colored according to centrosymmetry; those with perfect bulk coordination are not shown. Blue atoms 
mark the dislocation lines of the misfit dislocation network and red atoms the stacking fault region in between. The 
sequence shows how the network deforms under strain and finally nucleates dislocation loops into the lamella 
(adapted from Ref. [4]).
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ENTROPIC SHAPE MEMORY 
EFFECT: SIMPLE MODELS 
FOR COMPLEX SYSTEMS 

The mechanisms of 
shape recovery in polymers

Shape memory (SM) materials have the re-
markable property that, after being deformed, can 
return to their original undeformed shape under a 
suitable stimulus. In metallic SM alloys, this effect 
is based on a first order phase transition between 
two crystalline structures (austenite versus mar-
tensite). In shape memory polymers (SMPs), on the 
other hand, quite a different mechanism is at work.

Due to conformational degrees of freedom, 
entropy plays a key role for mechanical behavior 
of polymeric materials: The number of isotropic 
chain conformations is much larger than those 
corresponding to a stretched state [1]. As a result, 
when a polymeric sample is elongated, its entropy 
reduces. The tendency to increase entropy gives 
rise to restoring forces. This mechanism can be 
effective only if the system is at least partially er-
godic, e.g., if polymer chains are sufficiently mo-
bile to explore the available configurations. Con-
sequently, if one stretches a polymeric sample and 
cools it well below the glass transition tempera-
ture, the sample will remain in the deformed state 
due to the lack of mobility. To trigger the recovery 
of the original shape, the sample is heated above a 
switching temperature (which is often close to the 

glass transition temperature) in order to increase 
the chains’ mobility.

The activation of shape recovery can be also 
achieved in other ways. A promising route here is 
to use the plasticizing effect of small molecules 
(often referred to as additives) [2]. Moisture, for 
example, can enhance chain mobility and thus 
trigger the recovery process without the need to 
raise temperature. Indeed, as shown by the exper-
imental materials scientists at the Ruhr-Universi-
ty Bochum, diffusion of small molecules such as 
water, acetone and ethanol into a shape memory 
sample can lead to shape recovery at room tem-
perature, where the pure sample would keep its 
elongated form for long periods of time [3].

Figure 1 shows the structure formula of a pol-
yurethane-based shape memory polymer used in 
experiments of [3] (ESTANE ETE 75DT3, hence-
forth referred to as SMP-E). As illustrated in this 
figure, a SMP-E molecule can be viewed as a se-
quence of “hard” segments (which stabilize the 
shape) and “soft” ones (responsible for entropic 
elasticity). To study this complex system via mo-
lecular dynamics (MD) simulations, each of these 
segments is represented by a sphere. Remarkably, 

Figure 1: (a) Switching temperature for shape recovery versus concentration of additive molecules inside the  
SMP-E as for water, acetone and ethanol. For comparison, the reference data for the pure (dry) sample is also 
shown, Ref. [3]. The gray band gives the experimental uncertainty.
(b) The experimental setup for the observation of shape recovery. In the case shown here, shape recovery can do 
work against an external load, Ref. [3].
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Figure 3: Molecular dynamics simulations showing different stages of a shape memory cycle. A chain from the 
sample is shown on the right to highlight conformational changes, Ref. [4].

Figure 2: A bead-spring molecular dy-
namics model for ESTANE ETE 75 DT3, 
referred to here as SMP-E, Ref. [4].

Figure 4: Non monotonic effect of the size of small mol-
ecules on glass transition temperature, Tg , the mode 
coupling critical temperature, Tc , and the Vogel-Fulch-
er-Taman temperature, T0 . All these quantities show 
a minimum at an additive diameter of 0.5 in units of a 
segment length, Ref. [5]. 
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as illustrated in Figure 2, MD simulations shows 
that, despite its simplicity, the model is capable of 
reproducing the shape memory effect. As visual-
ized by a representative polymer in this plot, the 
polymer chains are elongated when the sample 
is stretched and remain in this low entropy state 
after the sample is cooled below the glass tran-
sition point of the hard segments. Shape recovery 
is activated either by reheating or by adding small 
molecules into the samples [3, 4].

Molecular dynamics simulations also reveal 
that the size of additive molecules plays an impor-
tant role for chain mobility. Indeed, there seems 

to be an optimum size for the additive-induced en-
hancement of the chains’ relaxation dynamics [5]. 

These new findings deserve a thorough exper-
imental investigation. One could, for example, use 
alcohols of various molecular length (methanol, 
ethanol, propanol, etc.) to systematically study 
the effect of molecular size. Moreover, the present 
MD simulations shall be complemented by fully 
atomistic investigations to explore the important 
role of functional groups and their mutual interac-
tions (e.g. hydrogen bonds) on the structural integ-
rity and shape recovery [6].
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Figure 1: (a) Ferroelectric field hysteresis 
showing the time evolution of polarization (P, 
solid line) and global strain (η, dotted line) 
during field-induced switching. Switching is 
related to an intermediate domain structure 
and the shift of domain walls.
(b) Oxidic ferroelectric perovskites based on 
the prototypical material BaTiO3 with alternat-
ing BaO and TiO2 layers. Material properties 
can be designed by substitution, e.g., Ba → Sr, 
Ti → Cu.

SIMULATION 
OF FUNCTIONAL 
FERROELECTRICS

Microscopic insights into 
ferroelectric domain walls

The name ferroelectric is derived from the Lat-
in word for iron.  Analogous to that well-known 
magnetic material, ferroelectrics have a sponta-
neous order parameter which shows characteris-
tic field hysteresis and multi-domain structures 
(Figure 1).

Analogous to magnetic materials, ferroelec-
trics bear a high potential for application rang-
ing from non-linear optics, energy harvesting, 
capacitors, sensors, non-volatile memories, and 
neuromorphic computing to future cooling devic-
es [1]. There are, however, important differences 
between these material classes: oxidic ferroelec-
trics such as BaTiO3, (Figure 1b), are brittle insu-
lating materials with mixed ionic-covalent bonds 
and the order parameter is the spontaneous po-

larization, i.e. ordered electric dipoles. Further-
more, the polarization is strongly coupled to the 
lattice which shows displacive structural phase 
transitions with exceptional functional properties 
[2].

The design of optimized ferroelectrics requires a 
fundamental understanding of the interplay between 
different elements of microstructure, particularly 
domain walls and inhomogeneities. In recent years, 
microscopic simulations have contributed to major 
breakthroughs [1]. The main challenges in simula-
tions are to correctly reproduce polarizability, phase 
stability at finite temperatures, and the coupling to 
external fields.

In our group we apply different ab initio based 
molecular dynamics simulation methods. To access 
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Figure 2: (a) In the effective Hamiltonian approach, the degrees of freedom are  coarse grained to the local dipole 
moment ui and the local strain wi.
(b) In core-shell potentials, each ion is split into a core and a shell to model the polarizability. The interaction be-
tween ions includes short-range and Coulomb interactions. 

Figure 3: (a) Sketch of 48x48x48 unit cells of BaTiO3 with two domain walls. Colored dots encode the direction of 
the local polarization (red: +z, blue: -z). (b) Layer resolved polarization in an ultra-thin negative domain. (c) Evolu-
tion of domain wall velocities after instantaneous application of external fields. (d) Illustration of the underlying 
microscopic processes: The field temporary drives local dipoles out of equilibrium which are high in energy and 
thus relax back. (e) Energy barriers to shift domain walls across TiO2 centered walls in the vicinity of a SrTiO3  
inclusion. (f) Snapshot of the field induced domain wall motion in BaTiO3: Left: pinning of the wall at the interface 
(IF) of a SrTiO3 inclusion; Right: Thermal fluctuations on the moving wall. Composed from Ref. [3, 4, 5].
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the microscale or to sample statistical processes, 
we use the so-called effective Hamiltonian approach 
(Figure 2). The degrees of freedom are coarse-
grained to local dipole moments and local strain be-
ing essential to ferroelectricity. Phase diagrams and 
functional properties can be correctly described. 
However, this method does not explicitly include 
atomistic information needed for substituents or 
defects. Therefore, we supplement and cross-check 
our results with atomistic core-shell potentials.

Figure 3 summarizes recent research exam-
ples from our group: (a)—(b) Ferroelectric domains 

can be stabilized up to few unit cells and their 
motion is related to the nucleation and growth of 
2D clusters on the walls. (c)—(d) Fast changes of 
external fields increase the number of nucleation 
centers on the moving wall and thus the domain 
wall velocity. As these centers are high in energy, 
they switch back with time and the domain wall 
velocity decreases. (e)—(f) Inhomogeneities local-
ly modify the domain wall dynamics. For example, 
the energy barrier to shift the domain wall across 
a TiO2 centered plane increases at SrTiO3 inclu-
sions, which may pin walls.

(a) (c)

(b) (d)

STO

(e)

(f)
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Figure 1: Workflow from DFT calculations for simple TCP phases to the training of ML models with domain knowl-
edge of the interatomic bond to predictions of the structural stability of the complex R-phase in Fe-Mo. 

EXPLORATION OF COMPLEX 
INTERMETALLIC PHASES 
WITH MACHINE LEARNING

Predicting Fe-Mo R-phase 
formation energy

Intermetallic phases are one of the most com-
monly observed groups of crystal structures. They 
exhibit peculiar properties like high strength and 
play an important technological role as beneficial 
precipitates in light-weight steels, as detrimental 
precipitates in single-crystal superalloys and as 
potential crystal-structures for hydrogen storage. 
In this project we focus on a subgroup of interme-
tallic phases, the topologically close packed (TCP) 
phases. The set of TCP phases contains the crys-
tal structures A15, μ, σ, χ, C14, C15, C36, R, M, P, 
and δ. These crystal structures of the TCP phases 
are geometrically closely related and can be un-
derstood as different periodic arrangements of the 
Frank-Kasper polyhedrons of the nearest neighbor 
shells with coordination numbers from 12 to 16. 
These TCP phases form in numerous binary, ter-
nary and multi-component compounds. The major 
factors that govern their thermodynamic stability 
are the average number of valence electrons and 
the differences in atomic size of the constituent 
elements as well as entropy contributions. The 
computational prediction of their thermodynamic 
stability requires the computation of the formation 
energy of the possible permutations of constituent 

elements on the inequivalent lattice sites (Wyck-
off sites or sublattices). This leads very quickly to 
a combinatorial explosion as it requires to permu-
tate the chemical elements on a number of sublat-
tices that ranges from 2 (A15, C15), 3 (C14), 4 (χ), 
and 5 (C36, σ, μ) for the simpler TCP phases to 11 
(R, M), 12 (P), and 14 (δ). The computational cost 
for computing the thermodynamic stability with a 
quantum-accurate method like density function-
al theory (DFT) limits the range of exploration of 
TCP phases to binary or ternary compositions of 
the simpler TCP phases (A15, C15, C14, χ, C36, σ, 
and μ) while chemically complex TCP phases or the 
structurally complex R, M, P and δ phases are out 
of reach.

Here we present a machine learning (ML) ap-
proach to overcome this limitation and demon-
strate a complete sampling of the R-phase in the 
Fe-Mo binary system with very high accuracy. This 
system is particularly well suited as it forms sever-
al simpler TCP phases and it is one of the few bina-
ry systems that exhibit a complex TCP phase. The 
training data for the ML model are magnetic and 
non-magnetic DFT calculations with full structur-
al relaxation for complete chemical samplings of 
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the simpler TCP phases A15, C15, C14, χ, C36, σ, 
and μ in the Fe-Mo system. This data set provides 
a systematic coverage of all coordination polyhe-
drons but the small size of only few 100 structures 
poses a challenge for constructing a ML model with 
sufficient transferability for robust predictions. To 
enforce reliable predictions, we train the ML mod-
els not only with conventional features of geome-
try and chemical composition but additionally we 
include domain knowledge at several levels. At 
the geometry level, we include domain knowledge 
of the crystal structures by taking polyhedron-re-
solved averages of atomic features. At the chem-
istry level we include domain knowledge of the 
interatomic bond in terms of approximate atom-re-
solved electronic density-of-states information 
computed with coarse-grained electronic-struc-
ture methods. The vector with all features from dif-
ferent levels is the basis for training the ML models 
to reproduce the formation energies of the differ-

ent lattice occupations of the simple TCP phases 
obtained by DFT. This overall workflow is shown in 
Figure 1 and repeated for different numerical re-
gression methods. We find a systematic shift of the 
learning curve towards improved performance with 
increasing domain knowledge, fairly independent of 
the chosen regression scheme (Figure 2). With the 
trained models the formation energy of the Fe-Mo 
R-phase can be predicted for the first time across 
the full range of chemical compositions as shown 
in Figure 3. The predictions are very robust with a 
root-mean-square-error of less than 25 meV/atom 
and in very good agreement with punctual DFT cal-
culations of the identified relevant compositions of 
the Fe-Mo R-phase. This approach will be rolled 
out further for other complex TCP phases in mul-
ti-component compounds in the German-French 
collaboration “Artificial Intelligence for Intermetal-
lic Materials” funded by DFG and ANR.

Figure 3: Prediction of the formation energy of the R-phase in the Fe-Mo system across the range of chemical 
compositions including the expected precision around the convex hull. 
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Figure 2: Performance of different 
combinations of domain knowl-
edge and regression algorithms in 
terms of root mean square error 
(RMSE) on formation energies of 
test structures.
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ATOMIC CLUSTER EXPANSION 
FOR PT-RH CATALYSTS

From ab initio to the simulations 
of nanoclusters in few steps 

Figure 1: A preferential segregation of Pt atoms (in blue) at surfaces of an Pt-Rh nanocluster. 
Left: the initial cluster configuration with a random distribution of both metals (containing 30% of Pt);  
right: the final configuration after equilibration performed using a hybrid MD-MC simulation. 

Noble metals platinum (Pt) and rhodium (Rh) 
have been extensively employed as heterogeneous 
catalysts in various applications, such as vehicle ex-
haust catalysts and fuel cells, due to their remark-
able activity and stability. These catalysts are often 
used in the form of nanoparticles, which maximize 
the active surface area for chemical reactions. No-

tably, the internal microstructure of these nanopar-
ticles can be tailored to enhance their functional 
properties and structural stability. One popular ap-
proach involves creating core-shell nanoparticles, 
where a core of one metal (e.g., Rh) is enveloped by 
a shell of another metal (e.g., Pt). This core-shell 
design can boost catalytic activity and stability. 
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Figure 2: Core-shell nanoclusters after 2 ns MD annealing at 1000 K (left) and 1500 K (right).  
The intermixing of Rh atoms (in green) into the Pt shell (transparent blue) takes place only at  
elevated temperatures and is therefore kinetically prohibited at ambient conditions. 
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However, maintaining the stability of non-equilibri-
um nanoparticles under operational conditions can 
be a challenge.

Atomic-scale simulations can provide deeper in-
sights into the thermodynamic and kinetic phenom-
ena governing the structure of these nanoparticles. 
These simulations can provide information about 
the energetic aspects of specific structural features 
as well as the dynamical evolution of the entire sys-
tem. However, to perform accurate simulations, re-
liable interatomic interaction models are essential. 

The atomic cluster expansion (ACE), developed 
at ICAMS by Prof. Drautz and his colleagues [1-3], 
presents a state-of-the-art approach for description 
of interatomic interactions. ACE combines machine 
learning methods and physically based models of 
interatomic interactions, offering superior accuracy 
and computational efficiency. One of the key fea-
tures of ACE is a complete and hierarchical set of 
basis functions that span the space of local atom-
ic environments. This enables to expand an atom-
ic property, such as the energy of atom, with out-
standing accuracy. 

Recently, we have developed an ACE parametri-
zation for the Pt-Rh system using a semi-automatic 
workflow [4]. This workflow involves generating a 
training dataset based on density functional theory 
(DFT) calculations, fitting the model, and carrying 
a series of fundamental validation tests. The work-
flow also employs active learning (AL) algorithms 
to improve the model’s accuracy. The parameteri-
zation of ACE models was based on about 30 000 
reference DFT calculations. The considered atomic 
structures span a wide portion of the configuration 
space for both elemental metals and their binary 
compounds. After initial training, AL was employed 
to ensure a reliable description of Pt-Rh surfaces as 

these are crucial for simulations of core-shell na-
noclusters. The validation of the parameterized po-
tential included various fundamental properties of 
the elemental metals as well as the phase stability 
and other thermodynamic properties of various Pt-
Rh phases.

Finally, the ACE parametrization was applied in a 
series of atomistic simulations to investigate struc-
tural stability of various Pt-Rh nanoclusters. The 
primary focus of the simulations was to examine 
the role of surface segregation that may play a role 
in stabilization of the core-shell geometry. Large-
scale molecular dynamics (MD) and Monte Carlo 
(MC) simulations were used to explore the thermo-
dynamic stability and the dynamical evolution of re-
alistic clusters at various temperatures and chemi-
cal compositions. We observed a strong tendency of 
the Pt atoms to segregate at cluster surfaces and to 
form a single monolayer coverage of the whole clus-
ter (see Figure 1). While the formation of a Pt sur-
face layer can be related to low surface energies of 
Pt, experimental observations of the core-shell par-
ticles show a thicker coverage of 3-5 layers of Pt at 
the surface. By carrying out additional simulations 
at elevated temperatures (see Figure 2), we showed 
that the core-shell cluster morphologies consisting 
of a Rh core with a thicker Pt shell observed in ex-
periments are not thermodynamically favorable but 
rather kinetically stabilized. This corroborates with 
the fact that the experimental synthesis procedure 
creates the core first followed by the coating of the 
surface element. However, the ACE predictions may 
be also affected by the limited accuracy of the DFT 
calculations for Pt surface energies. It is therefore 
necessary to reexamine the defect energetics in Pt 
using advanced DFT functionals in order to fully re-
solve this issue.
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Figure 1:
Per-atom extrapolation grades for the palladium cluster on silver substrate (by Dr. Yanyan Liang).

MACHINE LEARNING MODELS: 
ARE YOU SURE?

Controlling the reliability of 
machine learning models

Machine learning (ML) has gained widespread 
popularity in various scientific disciplines, includ-
ing materials science, thanks to its universal ap-
proach: if you can represent an object, process, 
or signal as a collection of numbers, i.e. featurize 
it, and you have corresponding target properties, 
then you can train machine learning model for it.

ML models are recognized for their ability to 
make accurate predictions within established 
input data ranges.  However, they face challeng-
es when attempting to make predictions beyond 
these known limits. These two scenarios are 
simply known as interpolation and extrapolation 
and they represent fundamental concepts in the 
world of ML. Interpolation means making predic-
tions within the confines of existing data. To put it 
simply, it’s like estimating what lies between two 
data points on a graph. In this scenario, ML mod-

els perform exceptionally well, providing accurate 
predictions when they can rely on past observa-
tions. Extrapolation, on the other hand, pushes 
the boundaries, requiring predictions beyond the 
scope of existing data. Imagine trying to predict 
what happens far beyond the last data point on 
that graph. Even highly advanced ML models fre-
quently encounter challenges in this domain. So, 
can we address this inherent limitation in ML mod-
els? Can we enhance their extrapolation capabil-
ities?

One approach to improving the extrapolation 
capabilities of ML models is to employ a more 
“physical” approach to feature engineering. This 
involves creating representations of objects that 
encapsulate underlying physical principles and 
fundamental symmetries, such as translations, 
rotations, inversions, etc. While this approach can 
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significantly broaden the applicability of the mod-
el, it may not guarantee absolutely accuracy in all 
situations.

Another approach is based on the intriguing 
ability of certain ML models to provide their degree 
of confidence or uncertainty regarding their own 
predictions. This confidence can be expressed as a 
continuous value, providing valuable insights into 
the reliability of the model’s output. The method 
of the uncertainty indication strongly depends on 
the type of model, with one approach applicable to 
neural networks, another suited for linear models, 
and thirds one is natural for Gaussian processes.

Among the various applications of ML in ma-
terials science, one interesting role is played by 
machine learning interatomic potentials (MLIP) 
– models that can predict the energy of arbitrary 
atomic configurations and corresponding forces 
acting on atoms. These potentials combine the ac-
curacy of electronic structure methods like densi-
ty functional theory (DFT) with computational ef-
ficiency comparable to classical force-fields.  One 
of the recent remarkable example of such models 
is the Atomic Cluster Expansion (ACE) [1]. ACE ef-
ficiently utilizes translational, rotational, inversion 
and permutation symmetries real space. It also 
exploits density trick to efficiently compute many-
body interactions and provides a formally com-
plete basis set for local atomic environments. ACE 
can represent local atomic neighborhoods of each 
atom within a specific cutoff distance as point in a 
high-dimensional space. The atomic environments 
from the training set collectively form a region of 
certain shape in this space. At this point, one can 
identify most representative points that outline 
the boundaries of this complex region and refer 
to them as an “active set” [2]. When new atomic 
environments are encountered during a molecu-
lar dynamics simulation with ACE, they are also 
mapped into this high-dimensional space.  This is 

where the crucial aspect comes into play: meas-
uring how closely these new points align with the 
active set. If they fall within the perimeter defined 
by the active set, the predictions made by ACE are 
reliable—this is the realm of interpolation.  

However, if these new points lie beyond the ac-
tive set’s boundaries, it signals that corresponding 
atomic environments are quite distinct from what 
the model has seen before, and the model extrap-
olates. To quantify this “novelty”, one can compute 
the so-called extrapolation grade – a value that is 
less than one for interpolation and greater than 
one for extrapolation cases.

Here’s where it becomes exciting: when we see 
new atomic structures with extrapolative atomic 
environments, we can pause our simulations and 
perform more precise calculations, such as DFT, 
for this new configurations, to obtain new ref-
erence data. These new data are then added to 
the training set, and the ACE model is updated, 
becoming more accurate. This iterative self-im-
provement process is known as “active learning” 
and it can effectively address the extrapolation 
problem of ML models.

In conclusion, machine learning models inher-
ently excel at interpolating within familiar data 
domains but encounter limitations when extrap-
olating into uncharted territories. This intrinsic 
limitation may limit the applicability of ML mod-
els. However, the ability of models to signal their 
uncertainty offers a solution. By taking these un-
certainty signals into account, we can avoid us-
ing models in scenarios where their reliability is 
reduced. Moreover, through active learning, we 
can systematically improve these models, ensur-
ing their extrapolation strength. Thus, the usage 
of the machine learning models is not just about 
their accuracy, it is also about using uncertainty 
to continually improve and expand their predictive 
capabilities.
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Figure 2:
Active Exploration: Schematic representa-
tion of artificially generated liquid water 
configurations aimed at maximizing 
extrapolation grades across the majority 
of atoms. The spontaneous emergence 
of hydrogen transfer configurations is 
observed. This technique allows for the 
efficient generation of training configura-
tions for ACE.
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Figure 1: The domino (top) and pearl (bottom) GB phases in a Σ37c grain boundary. The insets show the perfect fit 
between experimentally-observed and simulated structures. Adapted from Ref. [1] under CC-BY 4.0.

FROM THE STRUCTURE OF 
GRAIN BOUNDARIES TO 
THEIR THERMODYNAMICS 
AND PROPERTIES

Bridging experiments and 
atomistic simulations 

Almost every crystalline material in nature or 
in engineering applications is in fact polycrystal-
line, i.e., it consists of many differently-orientated 
crystallites. This fact strongly influences the ma-
terial properties: The grain boundaries (GBs) sepa-
rating the crystallites can, for example, act as ob-
stacles for dislocation movement, serve as weak 
planes for crack propagation, provide pathways 
for fast diffusion, or affect thermal and electrical 
conductivity. GBs are characterized by five mac-
roscopic parameters, describing the orientation of 
the abutting crystallites to each other as well as 
the geometry of the GB plane. Here, we were more 
interested in the so-called microscopic degrees of 
freedom, which describe the atomic arrangements 
that occur on the nanoscale. Advances in imaging 
techniques, especially (scanning) transmission 
electron microscopy (TEM, STEM), have increas-
ingly provided a picture of the structure of special 
GBs.

At the Max-Planck-Institut für Eisenforschung, 
such STEM experiments could recently prove an 
old hypothesis: In pure copper, different GB struc-

tures can (co-)exist on the same grain boundary 
plane (see e.g. [1]). Such a finding requires atomic 
resolution, good sample preparation, and some 
luck to find several structures under experimental 
conditions; not many such results have been re-
ported to date. These different structures do not, 
however, occur randomly: In order to understand 
their stability conditions, one can treat them as 
thermodynamic interface phases. (It must be not-
ed that these “phases” are quite different to bulk 
phases, given that they cannot exist on their own, 
but only at interfaces. In parts of the literature, 
they are therefore called complexions instead of 
GB phases.) A thermodynamic description of GBs 
is unfortunately not accessible via STEM experi-
ments. Here, atomistic simulations are invaluable 
for understanding and interpreting the experimen-
tal observations.

Our research currently concentrates on [111] 
tilt GBs, which exhibit a rich GB phase landscape. 
Figure 1 shows the two GB phases of a Σ37c 
[111] {1 10 11} GB, which we termed “domino” 
and “pearl” [1]. Using evolutionary algorithms, we 
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could find the same structures in the computer 
using EAM potentials. This allowed us to perform 
free-energy calculations and predict a GB phase 
transition at 460 K (Figure 2). Reality, however, 
turns out to be more complicated: Experimentally, 
an alternating pattern of domino and pearl struc-
tures was found. Here, we propose that inherent 
defects of the necessarily non-ideal experimental 
GBs might (meta-)stabilize such a pattern, high-
lighting that pure defect thermodynamics are in-
sufficient to explain the complex state of GBs in 
real materials [1].

Such a detailed investigation of a single GB 
type naturally poses the question of transferabili-
ty: Are we just looking at special cases—interest-
ing, but ultimately not significant for macroscop-
ic properties—or can we learn something about 
more than the Σ37c GB? Atomistic simulations 
enable the easy screening of several GB types and 
chemical elements. We thus investigated several 
[111] tilt GBs for a range of fcc metals, namely 
Ni, Cu, Pd, Ag, Au, Al, and Pb [2]. The result was 
that the same structural motifs of the domino and 
pearl phases occur in all of them, indicating that 
GB phase transitions are likely abundant across 

different systems. Model simulations with sim-
pler interatomic potentials (switching from EAM 
to medium-ranged pair potentials and then to pair 
potentials with only next-neighbor interaction) re-
vealed that the GB motifs can be reproduced with 
medium-ranged interactions—but not next-neigh-
bor interactions—even if the model potential is not 
material specific (Figure 3). The GB energies and 
properties are, however, very material specific [2].

Of course, most GB phases would in practice be 
tailored by introducing alloying elements and not 
by temperature and/or stress. We are undertaking 
investigations in this direction, but could already 
correlate GB structure and segregation sites for a 
single copper GB phase with silver as an alloying 
element [3]. Detailed analyses of the STEM data 
allowed us to directly connect the experimental 
GB state with hybrid molecular dynamics/Monte 
Carlo simulations [3].

Future work will also have to consider how 
these GB phases/complexions do affect the ma-
terial properties of macroscopic samples. We al-
ready have some data on the effect of different 
GBs on electrical resistance [4] and studies of the 
micromechanics of bicrystals are in progress.
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Figure 3: A Σ7 [111] grain boundary modeled 
with successively simpler models (EAM, me-
dium-ranged pair potential, next-neighbor pair 
potential), showing that only medium-ranged 
pair interactions are required to reproduce the 
structure. Adapted from Ref. [2] under CC-BY 
4.0.

Figure 2: Grain boundary excess free energies of 
the pearl (blue) and domino phase (red) show a 
grain boundary phase transition at around 460 K. 
Adapted from Ref. [1] under CC-BY 4.0.
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