Logo RUB
  • Home
  • Members
    • Structure
      • MRD Scientists
      • MRD Speakers
      • MRD Board
      • MRD Alumni
    • Early Career Researchers
      • ECR Scientists
      • ECR Representatives
      • ECR Networking
  • Research
    • Research at MRD
      • Publications
      • Fields of Expertise
      • Research Projects
      • Meet our Researchers
    • Partners
      • ZGH
      • Incubator Materials
      • Materials Chain
      • National Partnerships
      • International Partnerships
  • News & Events
    • News
      • RUB News
      • MRD News
      • Newsletter Archive
    • Events
      • Talks & Seminars
      • Conferences
      • Annual MRD Events
  • Education
    • Studying Materials Science at RUB
      • B.Sc. Study Programs
      • M.Sc. Study Programs
      • Doctoral Programs
    • International Lectures
      • Summer term 2023
      • Winter term 2022/2023
      • Archive – Teaching
  • Contact
 
Materials Research Department
Materials Research Department
MENÜ
  • RUB-STARTSEITE
  • Home
  • Members
    • Structure
    • Early Career Researchers
  • Research
    • Research at MRD
    • Partners
  • News & Events
    • News
    • Events
  • Education
    • Studying Materials Science at RUB
    • International Lectures
  • Contact
Home » Research » Research at MRD » Publications

- Ruhr-Universität Bochum

Scientific output

Publications

Over 7.000 scientific papers have been published by members of the MRD since the foundation of the MRD in 2009. This tremendous output is proof of the excellent research acieved in an interdisciplinary environment.

 

Below, you can either scroll through the complete list of our annually published research in peer-reviewed journals or search for a specific author or keyword via the free text search.

Interactive keyword cloud:

  • aluminum
  • atoms
  • binary alloys
  • carbon
  • catalysis
  • catalysts
  • chemistry
  • copper
  • deformation
  • density functional theory
  • deposition
  • electrochemistry
  • electrodes
  • grain boundaries
  • high resolution transmission electron microscopy
  • hydrogen
  • manganese
  • mechanical properties
  • microstructure
  • molecular dynamics
  • nanoparticles
  • nickel
  • oxidation
  • oxygen
  • scanning electron microscopy
  • single crystals
  • temperature
  • thin films
  • transmission electron microscopy
  • x ray diffraction

Filter

  • 2022 • 168
    Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys
    Darvishi Kamachali, R. and Wang, L.
    SCRIPTA MATERIALIA. Volume: 206 (2022)
    view abstract10.1016/j.scriptamat.2021.114226

    The elastic energy of mixing for multi-component solid solutions is derived by generalizing Eshelby's sphere-in-hole model. By surveying the dependence of the elastic energy on the chemical composition and lattice misfit, we derive a lattice strain coefficient λ*. Studying several high-entropy alloys and superalloys, we propose that most solid solution multi-component alloys are stable when λ*<0.16, generalizing the Hume-Rothery atomic-size rule for binary alloys. We also reveal that the polydispersity index δ, frequently used for describing strain in multi-component alloys, directly represents the elastic energy (e) with e=qδ2, q being an elastic constant. Furthermore, the effects of (i) the number and (ii) the atomic-size distribution of constituting elements on the phase stability of high-entropy alloys were quantified. The present derivations and discussions open for richer considerations of elastic effects in high-entropy alloys, offering immediate support for quantitative assessments of their thermodynamic properties and studying related strengthening mechanisms. © 2021

  • 2022 • 167
    Microstructure and residual stress evolution in nanocrystalline Cu-Zr thin films
    Chakraborty, J. and Oellers, T. and Raghavan, R. and Ludwig, A. and Dehm, G.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 896 (2022)
    view abstract10.1016/j.jallcom.2021.162799

    Grazing incidence X-ray diffraction (GIXRD) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) were employed to study the microstructure evolution and stress development in the nanocrystalline Cu100−X-ZrX (2.5 at% ≤ x ≤ 5.5 at%) alloy thin films. Small Zr additions to Cu led to significant lattice parameter anisotropy in the as-deposited Cu-Zr thin films both due to macroscopic lattice strain and stacking faults in the Cu matrix. Strain free lattice parameters obtained after the XRD stress analysis of Cu-Zr thin films confirmed formation of a supersaturated substitutional Cu-Zr solid solution. For the first time, the study of film microstructure by XRD line profile analysis (XLPA) confirmed progressive generation of dislocations and planar faults with increasing Zr composition in Cu-Zr alloy films. These microstructural changes led to the generation of tensile stresses in the thin films along with considerable stress gradients across the films thicknesses which are quantified by the traditional dψhkl−Sin2ψ and GIXRD stress measurement methods. The origin of tensile stresses and stress gradients in the Cu-Zr film are discussed on the basis of film growth and heterogeneous microstructure with changing Zr composition. © 2021

  • 2022 • 166
    Unravelling the lamellar size-dependent fracture behavior of fully lamellar intermetallic γ-TiAl
    Neogi, A. and Janisch, R.
    ACTA MATERIALIA. Volume: 227 (2022)
    view abstract10.1016/j.actamat.2022.117698

    Strengthening of metals by incorporating nano-scale coherent twin boundaries is one of the important breakthroughs of recent years in overcoming the strength-ductility trade-off. To this effect, also twin boundaries in nano-lamellar lightweight Ti-Al alloys promise a great potential, but their contribution to the deformation and fracture behavior needs to be better understood for designing optimal microstructures. To this end, we carry out linear elastic fracture mechanics informed large-scale atomistic simulations of fully lamellar microstructures consisting of the so-called ”true twin” boundaries in γ-TiAl. We find that nano-scale lamellae are not only effective in improving the fracture toughness and crack growth resistance, but also that the lamellar size controls the crack tip mechanisms. We identify a critical lamella thickness in the region between 1.64 and 3.04 nm, above which the crack tip events are primarily dislocation-based plasticity and the critical fracture initiation toughness exhibits an increasing trend with decreasing lamella size. Below the critical thickness, a decline in fracture toughness is observed and the crack tip propagation mechanisms are quasi-brittle in nature, i.e. the cleavage of atomic bonds at the crack tip is accompanied by plasticity events, such as twin-boundary migration and dislocation nucleation. A layer-wise analysis of the unstable stacking fault energy, the energy barrier for dislocation nucleation, that the critical thickness is of a similar value as the distance from the twin boundary at which bulk properties are restored. © 2022

  • 2022 • 165
    Combinatorial sputter deposition of CrMnFeCoNi high entropy alloy thin films on agitated particles
    Lourens, F. and Ludwig, Al.
    SURFACE AND COATINGS TECHNOLOGY. Volume: 449 (2022)
    view abstract10.1016/j.surfcoat.2022.128984

    A method for combinatorial sputter deposition of thin films on microparticles is presented. The method is developed for a laboratory-scale magnetron sputter system and uses a piezoelectric actuator to agitate the microparticles through oscillation. Custom-made components enable to agitate up to nine separate batches of particles simultaneously. Due to the agitation, the whole surface of the particles can be exposed to the sputter flux and thus completely covered with a thin film. By sputtering a CrMnFeCoNi high entropy alloy target, separate batches of polystyrene microspheres (500 μm monodisperse diameter), Fe alloy particles (300 μm mean size) and NaCl salt particles (350 μm mean size) were simultaneously coated with a homogeneous thin film. In contrast, a CrMnFeCoNi thin film that was deposited on agglomerating Al particles (5 μm mean size) only partially covers the surface of the particles. By co-sputtering a CrMn, an FeCo and a Ni target, nine separate batches of Al particles (25 μm mean size) were coated with a CrMnFeCoNi thin film with a composition gradient. These depositions demonstrate the ability to coat different types of particles with uniform films (from elemental to multinary compositions) and to deposit films with composition gradients on uniform particles. © 2022 Elsevier B.V.

  • 2022 • 164
    A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation
    Poerwoprajitno, A.R. and Gloag, L. and Watt, J. and Cheong, S. and Tan, X. and Lei, H. and Tahini, H.A. and Henson, A. and Subhash, B. and Bedford, N.M. and Miller, B.K. and O’Mara, P.B. and Benedetti, T.M. and Huber, D.L. and Zhang, W. and Smith, S.C. and Gooding, J.J. and Schuhmann, W. and Tilley, R.D.
    NATURE CATALYSIS. Volume: 5 (2022)
    view abstract10.1038/s41929-022-00756-9

    Single Pt atom catalysts are key targets because a high exposure of Pt substantially enhances electrocatalytic activity. In addition, PtRu alloy nanoparticles are the most active catalysts for the methanol oxidation reaction. To combine the exceptional activity of single Pt atom catalysts with an active Ru support we must overcome the synthetic challenge of forming single Pt atoms on noble metal nanoparticles. Here we demonstrate a process that grows and spreads Pt islands on Ru branched nanoparticles to create single-Pt-atom-on-Ru catalysts. By following the spreading process by in situ TEM, we found that the formation of a stable single atom structure is thermodynamically driven by the formation of strong Pt–Ru bonds and the lowering of the surface energy of the Pt islands. The stability of the single-Pt-atom-on-Ru structure and its resilience to CO poisoning result in a high current density and mass activity for the methanol oxidation reaction over time. [Figure not available: see fulltext.] © 2022, The Author(s), under exclusive licence to Springer Nature Limited.

  • 2022 • 163
    Linear growth of reaction layer during in-situ TEM annealing of thin film Al/Ni diffusion couples
    Kostka, A. and Naujoks, D. and Oellers, T. and Salomon, S. and Somsen, C. and Öztürk, E. and Savan, A. and Ludwig, A. and Eggeler, G.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 922 (2022)
    view abstract10.1016/j.jallcom.2022.165926

    During reactive layer growth in binary diffusion couples new phases can nucleate and grow. In the present work we perform in- and ex-situ interdiffusion studies in the system Ni-Al using X-ray diffraction (XRD) and analytical transmission electron microscopy (TEM). We investigate the reaction between 270 °C and 500 °C. We show that in the early stages of the solid-state reaction a small polycrystalline aluminide layer forms, while preferential grain growth follows in the later stage. In the reaction layer we detect the presence of Al3Ni by XRD and electron diffraction. Local chemical analysis by EDX in the TEM suggests that a second aluminide phase forms simultaneously. An in-situ TEM study at 380 °C shows layer growth of about 0.042 nm/s with a linear time dependence. We interpret this rate law on the basis of an interface-controlled reaction and discuss our results in the light of what is known about layer growth in thin film diffusion couples (presence/absence of predicted phases, linear/parabolic rate laws) and in view of results from the Ni-Al system published in the literature. Areas in need of further work are identified. © 2022 The Authors

  • 2022 • 162
    Influence of a Partial Substitution of Co by Fe on the Phase Stability and Fatigue Behavior of a CoCrWC Hard Alloy at Room Temperature
    Brackmann, L. and Schuppener, J. and Röttger, A. and Weber, S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A: PHYSICAL METALLURGY AND MATERIALS SCIENCE. Volume: 53 (2022)
    view abstract10.1007/s11661-022-06700-7

    The deformation-induced phase transition from fcc to hcp causes local embrittlement of the metal matrix in Cobalt-base alloys, facilitating subcritical crack growth under cyclic loading and reducing fatigue resistance. Our approach to increasing the fatigue life of Co-based hard alloys is to suppress the phase transition from fcc to hcp by an alloy modification that increases the stacking fault energy (SFE) of the metal matrix. Therefore, we substitute various contents (15, 25, and 35 mass pct) of Co by Fe and analyze the effect on the fatigue life and resistance against subcritical crack growth. Subcritical crack growth in the specimens takes place in a cyclic load test. The proceeding crack growth and the occurrence of phase transformations are monitored by scanning electron microscope (SEM) investigations and electron backscatter diffraction (EBSD). We determined an SFE of 35 mJ/m2 at an iron content of 35 mass pct, which leads to a change of the main deformation mechanism from deformation-induced martensitic transformation to deformation twinning. Analysis of cyclically loaded specimens revealed that the resistance against subcritical crack growth in the metal matrix is facilitated with increasing Fe content, leading to a significant increase in fatigue life. © 2022, The Author(s).

  • 2022 • 161
    Effect of laser shock peening without protective coating on the surface mechanical properties of NiTi alloy
    Wang, H. and Keller, S. and Chang, Y. and Kashaev, N. and Yan, K. and Gurevich, E.L. and Ostendorf, A.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 896 (2022)
    view abstract10.1016/j.jallcom.2021.163011

    We study the effect of laser shock peening (LSP) without protective coating on the surface mechanical property of NiTi alloy. The Vickers microhardness and wear resistance are measured to determine the mechanical property of NiTi samples treated with different LSP parameters (3 J with 10 ns and 5 J with 20 ns). From the electron backscatter diffraction (EBSD) analysis, it can be found that the laser shock peening does not induce obvious grain refinement in the surface region of NiTi alloy. Both compressive and tensile residual stress in the top layer are determined using the hole drilling method. The results show that the LSP treatment without a protective coating increases the roughness and enhances the surface mechanical properties of NiTi alloy. © 2021 Elsevier B.V.

  • 2022 • 160
    Ab initio investigations of point and complex defect structures in B2-FeAl
    Sözen, H.I. and Mendive-Tapia, E. and Hickel, T. and Neugebauer, J.
    PHYSICAL REVIEW MATERIALS. Volume: 6 (2022)
    view abstract10.1103/PhysRevMaterials.6.023603

    We study single-site and two-site defect structures in B2-type Fe-Al alloys by means of density functional theory supercell calculations. The defect formation energies are calculated as functions of the chemical potential, which are used to obtain the dependence of the defect concentrations on Al content at different temperatures. We also examine the converging behavior of the formation energies with respect to the supercell size to study the corresponding limit of dilute defects. The effect of magnetism is investigated by considering nonmagnetic, ferromagnetic, and paramagnetic states, calculations for the latter showing that the magnitude of the local magnetic moments strongly impacts the defect formation energies. The methodological studies are used to provide explanations for the wide spread of defect formation energies reported by experiments and other theoretical investigations. Based on these insights, the stability of the B2-FeAl structure as a function of Al concentration is obtained and discussed. © 2022 authors. Published by the American Physical Society.published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

  • 2022 • 159
    High-pressure CO, H2, CO2 and Ethylene Pulses Applied in the Hydrogenation of CO to Higher Alcohols over a Bulk Co-Cu Catalyst
    Telaar, P. and Schwiderowski, P. and Schmidt, S. and Stürmer, S. and Muhler, M.
    CHEMCATCHEM. Volume: 14 (2022)
    view abstract10.1002/cctc.202200385

    The reaction pathways of higher alcohol synthesis over a bulk Co−Cu catalyst (Co : Cu=2 : 1) were investigated by applying high-pressure pulse experiments as a surface-sensitive operando method at 280 °C and 60 bar. Using high-pressure CO and H2 pulses in a syngas flow with a H2:CO ratio of 1, it was shown that the surface of the working 2CoCu catalyst is saturated with adsorbed CO, but not with adsorbed atomic hydrogen, because only the H2 pulses increased the yields of all alcohols and alkanes. The reverse water gas shift reaction (WGSR) was investigated by pulsing CO2. The CO2 pulses poisoned the formation of methanol, ethanol, and 1-propanol, and the absence of significant CO and H2O responses indicates that the WGSR is not efficiently catalyzed by the applied 2CoCu catalyst excluding the presence of exposed Cu0 sites. A series of ethylene pulses showed that when a threshold mole fraction of ethylene of about 1 vol % is surpassed, 2CoCu is an active catalyst for the hydroformylation of ethylene to 1-propanol pointing to the presence of highly coordinatively unsaturated Co sites. © 2022 The Authors. ChemCatChem published by Wiley-VCH GmbH.

  • 2022 • 158
    Electrochemical dealloying in a magnetic field – Tapping the potential for catalyst and material design
    Rurainsky, C. and Nettler, D.-R. and Pahl, T. and Just, A. and Cignoni, P. and Kanokkanchana, K. and Tschulik, K.
    ELECTROCHIMICA ACTA. Volume: 426 (2022)
    view abstract10.1016/j.electacta.2022.140807

    Nanocatalyst optimisation through electrochemical dealloying has been employed as a successful strategy to increase catalytic activity, while reducing the need for precious metals. We present here a new pathway to influence the electrochemical dealloying, through external homogeneous magnetic fields. A homogeneous magnetic field with a flux density of 450 mT in two orientations, parallel or perpendicular to the current direction, was used during electrochemical dealloying using cyclic voltammetry of AgAu nanoparticles. We found increased porosity for low dealloying cycle numbers and improved catalytic properties after longer cycling, compared to nanoparticles dealloyed in the absence of magnetic fields. These findings demonstrate that magnetic fields applied during electrochemical dealloying have currently untapped potential that can be used to influence material properties in a new way and give researchers another powerful tool for material design. © 2022

  • 2022 • 157
    Weak itinerant magnetic phases of La2Ni7
    Wilde, J.M. and Sapkota, A. and Tian, W. and Bud'Ko, S.L. and Ribeiro, R.A. and Kreyssig, A. and Canfield, P.C.
    PHYSICAL REVIEW B. Volume: 106 (2022)
    view abstract10.1103/PhysRevB.106.075118

    La2Ni7 is an intermetallic compound that is thought to have itinerant magnetism with small moment (∼0.15μB/Ni) ordering below 65 K. A recent study of single crystal samples by Ribeiro et al. [Phys. Rev. B 105, 014412 (2022)2469-995010.1103/PhysRevB.105.014412] determined detailed anisotropic H-T phase diagrams and revealed three zero-field magnetic phase transitions at T1∼61.0 K, T2∼56.5 K, and T3∼42 K. In that study only the highest temperature phase is shown to have a clear ferromagnetic component. Here we present a single crystal neutron diffraction study determining the propagation vector and magnetic moment direction of the three magnetically ordered phases, two incommensurate and one commensurate, as a function of temperature. The higher temperature phases have similar, incommensurate propagation vectors, but with different ordered moment directions. At lower temperatures, the magnetic order becomes commensurate with magnetic moments along the c direction as part of a first-order magnetic phase transition. We find that the low-temperature commensurate magnetic order is consistent with a proposal from earlier DFT calculations. © 2022 American Physical Society.

  • 2022 • 156
    Strain rate dependent deformation behavior of BCC-structured Ti29Zr24Nb23Hf24 high entropy alloy at elevated temperatures
    Cao, T. and Guo, W. and Lu, W. and Xue, Y. and Lu, W. and Su, J. and Liebscher, C.H. and Li, C. and Dehm, G.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 891 (2022)
    view abstract10.1016/j.jallcom.2021.161859

    The mechanical behavior and deformation mechanisms of a body-centered cubic (BCC) Ti29Zr24Nb23Hf24 (at%) high entropy alloy (HEA) was investigated in temperatures and strain rates from 700° to 1100 °C and 10−3 to 10 s−1, respectively. The HEA exhibits a substantial increase in yield stress with increasing strain rate. The strain rate sensitivity (SRS) coefficient is ~3 times that of BCC alloy Nb-1Zr and even ~3.5 times that of pure Nb. This high SRS is attributed to the high Peierls stress of the HEA, which is about twice the Peierls stress of pure Nb. On the other hand, the flow stress exhibits a tendency from strain softening to strain hardening with the increase of strain rate especially at the relatively low temperatures. This behavior is explained by a change in dislocation motion from climbing to multiple slip with the increase of strain rate. Taking the specimen subjected to 800 ºC for example, dislocation walls formed at the early stage of deformation and at low strain rate of 10−3 s−1. In this case there is sufficient time to activate dislocations climb, which results in discontinuous dynamic recrystallization, and strain softening. However, when the strain rate amounts to 1 s−1, thermally activated processes such as dislocation climb are too sluggish. As a consequence, multiple slip systems are activated, and the dislocation interactions lead to the evolution of deformation bands, leading to strain hardening. © 2021 Elsevier B.V.

  • 2022 • 155
    Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
    Yawny, A. and Sade, M. and Eggeler, G.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH. Volume: 96 (2022)
    view abstract10.3139/ijmr-2005-0108

    In the present study, we investigate pseudoelastic pull-pull cycling of ultra-fine-grained (40 nm) Ni-rich (50.9 at.% Ni) NiTi shape-memory wires at temperatures ranging from 301 to 323 K. Strain-controlled experiments were performed using incremental strain steps and different constant maximum strains. Pull-pull cycling results in decreasing/increasing plateau stresses characterizing the forward/reverse transformations and an accumulation of non-recoverable strain. Saturation is reached after 30 cycles. We interpret our results in terms of a microstructural scenario where dislocations, which are introduced during the martensitic transformation (lattice invariant shear) and during pull-pull cycling (dislocation plasticity), interact with the stress-induced formation of martensite. We show that the slopes of stress-strain curves naturally depend on the total strain imposed in strain-controlled testing. We also provide a dislocation-based explanation for the evolving stress levels of the loading and unloading plateaus during pseudoelastic cycling. And most importantly, we show how dislocations act as microstructural markers which allow the material to remember its previous stress-strain history. © 2005 Carl Hanser Verlag, München.

  • 2022 • 154
    Integration of Hot Isostatic Pressing and Heat Treatment for Advanced Modified γ-TiAl TNM Alloys
    Bernal, D. and Chamorro, X. and Hurtado, I. and Lopez-Galilea, I. and Bürger, D. and Weber, S. and Madariaga, I.
    MATERIALS. Volume: 15 (2022)
    view abstract10.3390/ma15124211

    The conventional processing route of TNM (Ti-Nb-Mo) alloys combines casting and Hot Isostatic Pressing (HIP) followed by forging and multiple heat treatments to establish optimum properties. This is a time-consuming and costly process. In this study we present an advanced alternative TNM alloy processing route combining HIP and heat treatments into a single process, which we refer to as IHT (integrated HIP heat treatment), applied to a modified TNM alloy with 1.5B. A Quintus HIP lab unit with a quenching module was used, achieving fast and controlled cooling, which differs from the slow cooling rates of conventional HIP units. A Ti-42.5Al-3.5Nb-1Mo-1.5B (at.%) was subjected to an integrated two HIP steps at 200 MPa, one at 1250◦ C for 3 h and another at 1260◦ C for 1 h, both under a protective Ar atmosphere and followed by cooling at 30 K/min down to room temperature. The results were compared against the Ti-43.5Al-3.5Nb-1Mo-0.8B (at.%) thermomechanically processed in a conventional way. Applying IHT processing to the 1.5B alloy does indeed achieve good creep strength, and the secondary creep rate of the IHT processed materials is similar to that of conventionally forged TNM alloys. Thus, the proposed advanced IHT processing route could manufacture more cost-effective TiAl components. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2022 • 153
    Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data
    Zhou, X. and Wei, Y. and Kühbach, M. and Zhao, H. and Vogel, F. and Darvishi Kamachali, R. and Thompson, G.B. and Raabe, D. and Gault, B.
    ACTA MATERIALIA. Volume: 226 (2022)
    view abstract10.1016/j.actamat.2022.117633

    Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrystalline materials. Hence, their structures have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Using APT data sets, we present here a machine-learning-based approach for the automated quantification of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analysis, including revealing their in-plane chemical decoration patterns. We applied this approach to experimentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical features that could not have been found by standard compositional analyses. Lastly, we tracked the temporal evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial phase separation, characterized by the evolution of complex composition patterns. This machine-learning-based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated chemistry-structure-property relations. © 2022 The Authors

  • 2022 • 152
    MEAM interatomic potentials of Ni, Re, and Ni-Re alloys for atomistic fracture simulations
    Alam, M. and Lymperakis, L. and Groh, S. and Neugebauer, J.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING. Volume: 30 (2022)
    view abstract10.1088/1361-651X/ac3a15

    Second nearest neighbor modified embedded atom method (2NN-MEAM) interatomic potentials are developed for the Ni, Re, and Ni-Re binaries. To construct the potentials, density functional theory (DFT) calculations have been employed to calculate fundamental physical properties that play a dominant role in fracture. The potentials are validated to accurately reproduce material properties that correlate with material's fracture behavior. The thus constructed potentials were applied to perform large scale simulations of mode I fracture in Ni and Ni-Re binaries with low Re content. Substitutional Re did not alter the ductile nature of crack propagation, though it resulted in a monotonous increase of the critical stress intensity factor with Re content. © 2021 The Author(s). Published by IOP Publishing Ltd.

  • 2021 • 151
    Influence of crystalline defects on magnetic nanodomains in a rare-earth-free magnetocrystalline anisotropic alloy
    Palanisamy, D. and Kovács, A. and Hegde, O. and Dunin-Borkowski, R.E. and Raabe, D. and Hickel, T. and Gault, B.
    PHYSICAL REVIEW MATERIALS. Volume: 5 (2021)
    view abstract10.1103/PhysRevMaterials.5.064403

    A complex interplay between magnetic domain structure and crystalline imperfections, here twins, is revealed in a rare-earth-free MnAl bulk magnet. The magnetic domains are observed to be in the nanometer range for a large part of the magnetic structure and to scale with the number density of twins formed during thermal processing. We explain this phenomenon by a reduction in domain-wall energy at the twinned regions as proven by ab initio calculations. In addition, our atomic-scale analysis reveals that the twin boundaries contain excess Mn atoms that reduce the local magnetization, serving as an obstacle for domain wall motion. These insights can help guide the strategic design of magnetic materials by controlling the initial phase distribution to tailor the twin density and hence, the distribution of domains. © 2021 authors.

  • 2021 • 150
    Phase-field modeling of chemoelastic binodal/spinodal relations and solute segregation to defects in binary alloys
    Mianroodi, J.R. and Shanthraj, P. and Svendsen, B. and Raabe, D.
    MATERIALS. Volume: 14 (2021)
    view abstract10.3390/ma14071787

    Microscopic phase-field chemomechanics (MPFCM) is employed in the current work to model solute segregation, dislocation-solute interaction, spinodal decomposition, and precipitate formation, at straight dislocations and configurations of these in a model binary solid alloy. In particular, (i) a single static edge dipole, (ii) arrays of static dipoles forming low-angle tilt (edge) and twist (screw) grain boundaries, as well as at (iii) a moving (gliding) edge dipole, are considered. In the first part of the work, MPFCM is formulated for such an alloy. Central here is the MPFCM model for the alloy free energy, which includes chemical, dislocation, and lattice (elastic), contributions. The solute concentration-dependence of the latter due to solute lattice misfit results in a strong elastic influence on the binodal (i.e., coexistence) and spinodal behavior of the alloy. In addition, MPFCM-based modeling of energy storage couples the thermodynamic forces driving (Cottrell and Suzuki) solute segregation, precipitate formation and dislocation glide. As implied by the simulation results for edge dislocation dipoles and their configurations, there is a competition between (i) Cottrell segregation to dislocations resulting in a uniform solute distribution along the line, and (ii) destabilization of this distribution due to low-dimensional spinodal decomposition when the segregated solute content at the line exceeds the spinodal value locally, i.e., at and along the dislocation line. Due to the completely different stress field of the screw dislocation configuration in the twist boundary, the segregated solute distribution is immediately unstable and decomposes into precipitates from the start. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2021 • 149
    A combined experimental and first-principles based assessment of finite-temperature thermodynamic properties of intermetallic al3sc
    Gupta, A. and Tas, B. and Korbmacher, D. and Dutta, B. and Neitzel, Y. and Grabowski, B. and Hickel, T. and Esin, V. and Divinski, S.V. and Wilde, G. and Neugebauer, J.
    MATERIALS. Volume: 14 (2021)
    view abstract10.3390/ma14081837

    We present a first-principles assessment of the finite-temperature thermodynamic properties of the intermetallic Al3Sc phase including the complete spectrum of excitations and compare the theoretical findings with our dilatometric and calorimetric measurements. While significant electronic contributions to the heat capacity and thermal expansion are observed near the melting temperature, anharmonic contributions, and electron–phonon coupling effects are found to be relatively small. On the one hand, these accurate methods are used to demonstrate shortcomings of empirical predictions of phase stabilities such as the Neumann–Kopp rule. On the other hand, their combination with elasticity theory was found to provide an upper limit for the size of Al3Sc nanoprecipitates needed to maintain coherency with the host matrix. The chemo-mechanical coupling being responsible for the coherency loss of strengthening precipitates is revealed by a combination of state-of-the-art simulations and dedicated experiments. These findings can be exploited to fine-tune the microstructure of Al-Sc-based alloys to approach optimum mechanical properties. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2021 • 148
    Twin-boundary assisted crack tip plasticity and toughening in lamellar γ-TiAl
    Neogi, A. and Janisch, R.
    ACTA MATERIALIA. Volume: 213 (2021)
    view abstract10.1016/j.actamat.2021.116924

    The internal twin-boundaries in lamellar γ-TiAl alloys, namely true-twin (TT), rotational boundary (RB), and pseudo-twin (PT), are known to be effective in strengthening the TiAl microstructures. Nevertheless, for designing microstructures with optimised mechanical properties, a better understanding of the role of these boundaries on fracture behavior is still required. To this end, we study how and to what degree crack advancement is affected by the local lattice orientation and atomic structure at the various twin boundaries. Molecular statics simulations were performed in conjunction with a linear elastic fracture mechanics based analysis, to understand the inter-lamellar and as well as trans-lamellar crack advancement at a TT, RB, and PT interface. The fracture toughness as well as the crack advancement mechanisms of the inter-lamellar cracks depend critically on the propagation direction. For instance, cracks along 〈112¯] in the TT, RB, and PT plane always emit dislocations at the crack tip, while the cracks along the opposite direction are brittle in nature. When it comes to trans-lamellar crack advancement, the crack tip shows significant plastic deformation and toughening for all interfaces. However, at a TT, a brittle crack is able to penetrate through the interface at a higher applied load, and propagates in the adjacent γ′ phase, while in the case of RB and PT, the crack tip is blunted and arrested at or near the boundary, resulting in dislocation emission and crack tip toughening. This suggests that a variation of the sequence of the different rotational boundaries could be a possibility to tune the crack tip plasticity and toughening in lamellar TiAl. © 2021 The Author(s)

  • 2021 • 147
    Phase decomposition in nanocrystalline Cr0.8Cu0.2 thin films
    Chakraborty, J. and Harzer, T.P. and Duarte, M.J. and Dehm, G.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 888 (2021)
    view abstract10.1016/j.jallcom.2021.161391

    Metastable Cr0.8Cu0.2 alloy thin films with nominal thickness of 360 nm have been deposited on Si(100) substrate by co-evaporation of Cu and Cr using molecular beam epitaxy (MBE). Phase evolution, microstructure, stress development, and crystallographic texture in Cr0.8Cu0.2 thin films have been investigated by X-ray diffraction (XRD), atom probe tomography (APT) and transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) during annealing of the films in the temperature range 200–450 °C. X-ray diffraction of the as-deposited thin film shows single phase bcc crystal structure of the film whereas APT observation of fine precipitates in the film matrix due to inherent compositional fluctuation indicates onset of phase separation via spinodal decomposition regime. XRD (in-situ) and APT investigation of 300 °C annealed film reveals that the early stage of phase separation involves localized formation of metastable intermediate bcc precipitate phase having 60 at% Cr and 40 at% Cu approximately (~Cr0.6Cu0.4). For longer duration of annealing at temperature ≥350 °C, such metastable bcc precipitates act as heterogeneous nucleation sites for the onset of precipitation of Cu rich fcc Cu(Cr) phase which indicates a change of phase separation mechanism from ‘spinodal decomposition’ to ‘nucleation and growth’. Annealing of the film at temperature ≥400 °C for longer duration leads to the formation of a two phase structure with Cu rich fcc precipitate phase in a Cr rich bcc matrix. Observed phase decomposition is accompanied by significant changes in the microstructure, residual stress and crystallographic texture in the Cr rich bcc film matrix which leads to the minimization of both surface and strain energies and thereby a reduction of total Gibbs free energy of the thin film. Thermodynamic model calculation has been presented in order to understand the nucleation pathway of Cu rich stable fcc Cu(Cr) precipitates via non-classical nucleation of metastable intermediate bcc Cr0.6Cu0.4 phase. © 2021 Elsevier B.V.

  • 2021 • 146
    Laboratory-Scale Processing and Performance Assessment of Ti–Ta High-Temperature Shape Memory Spring Actuators
    Paulsen, A. and Dumlu, H. and Piorunek, D. and Langenkämper, D. and Frenzel, J. and Eggeler, G.
    SHAPE MEMORY AND SUPERELASTICITY. Volume: 7 (2021)
    view abstract10.1007/s40830-021-00334-1

    Ti75Ta25 high-temperature shape memory alloys exhibit a number of features which make it difficult to use them as spring actuators. These include the high melting point of Ta (close to 3000 °C), the affinity of Ti to oxygen which leads to the formation of brittle α-case layers and the tendency to precipitate the ω-phase, which suppresses the martensitic transformation. The present work represents a case study which shows how one can overcome these issues and manufacture high quality Ti75Ta25 tensile spring actuators. The work focusses on processing (arc melting, arc welding, wire drawing, surface treatments and actuator spring geometry setting) and on cyclic actuator testing. It is shown how one can minimize the detrimental effect of ω-phase formation and ensure stable high-temperature actuation by fast heating and cooling and by intermediate rejuvenation anneals. The results are discussed on the basis of fundamental Ti–Ta metallurgy and in the light of Ni–Ti spring actuator performance. © 2021, The Author(s).

  • 2021 • 145
    Mechanochemical Synthesis of Supported Bimetallic Catalysts
    De Bellis, J. and Felderhoff, M. and Schüth, F.
    CHEMISTRY OF MATERIALS. Volume: 33 (2021)
    view abstract10.1021/acs.chemmater.0c04134

    In a previous publication, ball milling was introduced as an effective method for the preparation of supported metal catalysts, simply from the coarse powders of the metal and metal oxide support. In this follow-up study, we demonstrate that mixing multiple metal sources can result in supported alloyed nanoparticles, extending the field of application of the method to the synthesis of supported bimetallic catalysts. Ball milling Au and Pd or Au and Cu in a high-energy regime (shaker mill) indeed led to the formation of Au-Pd and Au-Cu nanoparticles, supported on MgO or yttria-stabilized zirconia (YSZ), which were explored as model systems. Powder X-ray diffraction and electron microscopy were the primary means to investigate as-synthesized materials. The catalytic performance in CO oxidation was also investigated to understand better how the synthetic method could affect the features of the final materials as catalysts. © 2021 The Authors. Published by American Chemical Society.

  • 2021 • 144
    Evidence for a large Rashba splitting in PtPb4 from angle-resolved photoemission spectroscopy
    Lee, K. and Mou, D. and Jo, N.H. and Wu, Y. and Schrunk, B. and Wilde, J.M. and Kreyssig, A. and Estry, A. and Bud'Ko, S.L. and Nguyen, M.C. and Wang, L.-L. and Wang, C.-Z. and Ho, K.-M. and Canfield, P.C. and Kaminski, A.
    PHYSICAL REVIEW B. Volume: 103 (2021)
    view abstract10.1103/PhysRevB.103.085125

    We studied the electronic structure of PtPb4 using laser angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations. This material is closely related to PtSn4, which exhibits exotic topological properties such as Dirac node arcs. The Fermi surface (FS) of PtPb4 consists of two electron pockets at the center of the Brillouin zone (BZ) and several hole pockets around the zone boundaries. Our ARPES data reveal significant Rashba splitting at the Γ point, in agreement with DFT calculations. The presence of Rashba splitting may render this material of potential interest for spintronic applications. © 2021 American Physical Society.

  • 2021 • 143
    Application of nanoindentation technique to test surface hardness and residual stress of NiTi alloy after femtosecond laser shock peening
    Wang, H. and Gurevich, E.L. and Ostendorf, A.
    PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING. Volume: 11679 (2021)
    view abstract10.1117/12.2593092

    Laser shock peening is a new and important surface treatment technique that can enhance the mechanical properties of metal materials. Normally, the nanosecond laser with pulse-width between 5 ns and 20 ns is used to induce a high-pressure shock wave that can generate plastic deformation in the top layer of metals. The femtosecond laser shock peening in the air has been studied recently, which can induce higher pressure shock wave than that of traditional nanosecond laser shock peening in a very short time. The NiTi alloy is processed by femtosecond laser shock peening, then a nanoindentation device is used to measure its surface hardness and residual stress. The hardness results of NiTi alloy before and after treatment show that the femtosecond laser shock peening can increase the hardness of NiTi alloy, which also shows that the femtosecond laser can be used to perform laser shock peening on NiTi alloy without coating. © 2021 SPIE.

  • 2021 • 142
    Ab initio based models for temperature-dependent magnetochemical interplay in bcc Fe-Mn alloys
    Schneider, A. and Fu, C.-C. and Waseda, O. and Barreteau, C. and Hickel, T.
    PHYSICAL REVIEW B. Volume: 103 (2021)
    view abstract10.1103/PhysRevB.103.024421

    Body-centered cubic (bcc) Fe-Mn systems are known to exhibit a complex and atypical magnetic behavior from both experiments and 0 K electronic-structure calculations, which is due to the half-filled 3d band of Mn. We propose effective interaction models for these alloys, which contain both atomic-spin and chemical variables. They were parameterized on a set of key density functional theory (DFT) data, with the inclusion of noncollinear magnetic configurations being indispensable. Two distinct approaches, namely a knowledge-driven and a machine-learning approach have been employed for the fitting. Employing these models in atomic Monte Carlo simulations enables the prediction of magnetic and thermodynamic properties of the Fe-Mn alloys, and their coupling, as functions of temperature. This includes the decrease of Curie temperature with increasing Mn concentration, the temperature evolution of the mixing enthalpy, and its correlation with the alloy magnetization. Also, going beyond the defect-free systems, we determined the binding free energy between a vacancy and a Mn atom, which is a key parameter controlling the atomic transport in Fe-Mn alloys. © 2021 American Physical Society.

  • 2021 • 141
    3d transition-metal high-entropy Invar alloy developed by adjusting the valence-electron concentration
    Rao, Z. and Cąklr, A. and Özgün, Ö. and Ponge, D. and Raabe, D. and Li, Z. and Acet, M.
    PHYSICAL REVIEW MATERIALS. Volume: 5 (2021)
    view abstract10.1103/PhysRevMaterials.5.044406

    By considering the valence-electron concentration of 3d transition-metal alloys and compounds, we develop 3d high-entropy alloy Mn12.1Fe34.2Co33.5Ni12.3Cu7.9 with 8.7 electrons per atom, which is identical to that of Fe65Ni35 Invar. We carry out X-ray diffraction, scanning electron microscopy, magnetization, thermal expansion, and elastic modulus measurements, by which we show that the HEA alloy indeed carries Invar properties. This is evidenced particularly by the observed spontaneous volume magnetostriction and the lattice softening covering a broad temperature-range around the ferromagnetic Curie temperature. © 2021 American Physical Society.

  • 2021 • 140
    Spinodal Decomposition in Nanocrystalline Alloys
    Zhou, X. and Darvishi Kamachali, R. and Boyce, B.L. and Clark, B.G. and Raabe, D. and Thompson, G.B.
    ACTA MATERIALIA. Volume: 215 (2021)
    view abstract10.1016/j.actamat.2021.117054

    For more than half a century, spinodal decomposition has been a key phenomenon in considering the formation of secondary phases in alloys. The most prominent aspect of the spinodal phenomenon is the lack of an energy barrier on its transformation pathway, offering an alternative to the nucleation and growth mechanism. The classical description of spinodal decomposition often neglects the influence of defects, such as grain boundaries, on the transformation because the innate ability for like-atoms to cluster is assumed to lead the process. Nevertheless, in nanocrystalline alloys, with a high population of grain boundaries with diverse characters, the structurally heterogeneous landscape can greatly influence the chemical decomposition behavior. Combining atom-probe tomography, precession electron diffraction and density-based phase-field simulations, we address how grain boundaries contribute to the temporal evolution of chemical decomposition within the miscibility gap of a Pt-Au nanocrystalline system. We found that grain boundaries can actually have their own miscibility gaps profoundly altering the spinodal decomposition in nanocrystalline alloys. A complex realm of multiple interfacial states, ranging from competitive grain boundary segregation to barrier-free low-dimensional interfacial decomposition, occurs with a dependency upon the grain boundary character. © 2021

  • 2021 • 139
    Incorporating elasticity into CALPHAD-informed density-based grain boundary phase diagrams reveals segregation transition in Al-Cu and Al-Cu-Mg alloys
    Wang, L. and Darvishi Kamachali, R.
    COMPUTATIONAL MATERIALS SCIENCE. Volume: 199 (2021)
    view abstract10.1016/j.commatsci.2021.110717

    The phase-like behavior of grain boundaries (GBs), recently evidenced in several materials, is opening up new possibilities in the design of alloy microstructures. In this context, GB phase diagrams are contributing to a predictive description of GB segregation and (interfacial) phase changes. The influence of chemo-mechanical solute-GB interactions on the GB phase diagram remains elusive so far. This is particularly important for multi-component alloys where the elastic interactions among solute atoms, of various sizes and bonding energies, can prevail, governing a complex co-segregation phenomenon. Recently, we developed a density-based model for GB thermodynamics that intrinsically accounts for GB elasticity in pure elements. In this work, we incorporate the homogeneous and heterogeneous elastic energies associated with the solutes into the density-based framework. We derive the multi-component homogeneous elastic energy by generalizing the continuum misfitting sphere model and extend it for GBs. The density-based free energy functional directly uses bulk CALPHAD thermodynamic data. The model is applied to binary and ternary Al alloys. We reveal that the elastic energy can profoundly affect the GB solubility and segregation behavior, leading to Cu segregation in otherwise Cu-depleted Al GBs. Consequently, GB segregation transition, i.e., a jump in the GB segregation as a function of alloy composition, is revealed in Al-Cu and Al-Cu-Mg alloy systems with implications for subsequent GB precipitation in these alloys. CALPHAD-informed elasticity-incorporated GB phase diagrams enable addressing a broader range of GB phenomena in engineering multi-component alloys. © 2021 Elsevier B.V.

  • 2021 • 138
    CrOx-Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO3in Photocatalytic Water Splitting
    Han, K. and Haiber, D.M. and Knöppel, J. and Lievens, C. and Cherevko, S. and Crozier, P. and Mul, G. and Mei, B.
    ACS CATALYSIS. Volume: 11 (2021)
    view abstract10.1021/acscatal.1c03104

    By photodeposition of CrOxon SrTiO3-based semiconductors doped with aliovalent Mg(II) and functionalized with Ni/NiOxcatalytic nanoparticles (economically significantly more viable than commonly used Rh catalysts), an increase in apparent quantum yield (AQYs) from ∼10 to 26% in overall water splitting was obtained. More importantly, deposition of CrOxalso significantly enhances the stability of Ni/NiO nanoparticles in the production of hydrogen, allowing sustained operation, even in intermittent cycles of illumination.In situelemental analysis of the water constituents during or after photocatalysis by inductively coupled plasma mass spectrometry/optical emission spectrometry shows that after CrOxdeposition, dissolution of Ni ions from Ni/NiOx-Mg:SrTiO3is significantly suppressed, in agreement with the stabilizing effect observed, when both Mg dopant and CrOxare present. State-of-the-art electron microscopy and energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS) analyses demonstrate that upon preparation, CrOxis photodeposited in the vicinity of several, but not all, Ni/NiOxparticles. This implies the formation of a Ni-Cr mixed metal oxide, which is highly effective in water reduction. Inhomogeneities in the interfacial contact, evident from differences in contact angles between Ni/NiOxparticles and the Mg:SrTiO3semiconductor, likely affect the probability of reduction of Cr(VI) species during synthesis by photodeposition, explaining the observed inhomogeneity in the spatial CrOxdistribution. Furthermore, by comparison with undoped SrTiO3, Mg-doping appears essential to provide such favorable interfacial contact and to establish the beneficial effect of CrOx. This study suggests that the performance of semiconductors can be significantly improved if inhomogeneities in interfacial contact between semiconductors and highly effective catalytic nanoparticles can be resolved by (surface) doping and improved synthesis protocols. © 2021 The Authors. Published by American Chemical Society

  • 2021 • 137
    Faceting diagram for Ag segregation induced nanofaceting at an asymmetric Cu tilt grain boundary
    Peter, N.J. and Duarte, M.J. and Kirchlechner, C. and Liebscher, C.H. and Dehm, G.
    ACTA MATERIALIA. Volume: 214 (2021)
    view abstract10.1016/j.actamat.2021.116960

    In this work, we experimentally establish the isothermal nanofacet evolution at an asymmetric ∑5 tilt grain boundary in the Cu-Ag system using a diffusion couple approach. We investigate the nanofacet formation along the grain boundary in dependence of the Ag solute excess concentration. The initial grain boundary dissociates into asymmetric Ag-lean segments and Ag-rich symmetric (210) segments. Increasing Ag excess leads to an increase in Ag-rich facet segment length, while the length of the asymmetric facets remains constant. From this, we construct a grain boundary nanofaceting diagram deduced from our experiments relating local atomic structure, overall inclination and Ag solute excess. © 2021 The Author(s)

  • 2021 • 136
    Gd-Ru Nanoparticles Supported on Zr0.5Ce0.5O2Nanorods for Dry Methane Reforming
    Das, S. and Sengupta, M. and Bag, A. and Saini, A. and Muhler, M. and Bordoloi, A.
    ACS APPLIED NANO MATERIALS. Volume: 4 (2021)
    view abstract10.1021/acsanm.0c03140

    Dry reforming of methane is considered a potential reaction for the utilization of waste greenhouse gases to generate valuable chemicals. However, catalyst deactivation under a harsh reaction condition appears as the main obstacle toward its commercialization. In the present work, a facile hydrothermal synthesis procedure was adopted to prepare a robust Ru-based catalyst. Among the various combinations, a 1% Ru supported over Zr0.5Ce0.5O2 nanorod catalyst showed enhanced coke resistance and almost stable activity during 200 h activity analysis. Promotion of Ru/Zr0.5Ce0.5O2 with an optimum amount of Gd2O3 improved catalyst stability, which was attributed to the strong interaction of Ru with Gd2O3 leading to smaller Ru particle size (∼5 nm) and an improved OSC was inhibiting coke deposition. Promotion with 0.5% Gd2O3 further lowered the apparent activation energy of methane conversion to ∼20.6 kcal/mol without changing the reaction orders significantly. DFT calculation confirmed, due to the orbital similarity, methane cracking is preferred over Ru atoms and CO2 activation occurred on Gd atoms. ©

  • 2021 • 135
    Calibrating SECCM measurements by means of a nanoelectrode ruler. The intrinsic oxygen reduction activity of PtNi catalyst nanoparticles
    Tetteh, E.B. and Löffler, T. and Tarnev, T. and Quast, T. and Wilde, P. and Aiyappa, H.B. and Schumacher, S. and Andronescu, C. and Tilley, R.D. and Chen, X. and Schuhmann, W.
    NANO RESEARCH. Volume: (2021)
    view abstract10.1007/s12274-021-3702-7

    Scanning electrochemical cell microscopy (SECCM) is increasingly applied to determine the intrinsic catalytic activity of single electrocatalyst particle. This is especially feasible if the catalyst nanoparticles are large enough that they can be found and counted in post-SECCM scanning electron microscopy images. Evidently, this becomes impossible for very small nanoparticles and hence, a catalytic current measured in one landing zone of the SECCM droplet cannot be correlated to the exact number of catalyst particles. We show, that by introducing a ruler method employing a carbon nanoelectrode decorated with a countable number of the same catalyst particles from which the catalytic activity can be determined, the activity determined using SECCM from many spots can be converted in the intrinsic catalytic activity of a certain number of catalyst nanoparticles.[Figure not available: see fulltext.] © 2021, The Author(s).

  • 2021 • 134
    CrMnFeCoNi high entropy alloys with carbon and nitrogen: mechanical properties, wear and corrosion resistance
    Chmielak, L. and Mujica Roncery, L. and Niederhofer, P. and Weber, S. and Theisen, W.
    SN APPLIED SCIENCES. Volume: 3 (2021)
    view abstract10.1007/s42452-021-04814-y

    The use of interstitial elements has been a key factor for the development of different kinds of steels. However, this aspect has been little explored in the field of high entropy alloys (HEAs). In this investigation, the effect of carbon and nitrogen in a near-equiatomic CrMnFeCoNi HEA is studied, analyzing their impact on the microstructure, and mechanical properties from 77K to 673K, as well as wear, and corrosion resistance. Carbon and nitrogen are part of the FCC solid solution and contribute to the formation of precipitates. An increase in the yield and ultimate tensile strength accompanied with a decrease in the ductility are the main effects of C and N. The impact toughness of the interstitial-free material is higher than that of C and C+N alloyed systems. Compared to CrNi and CrMn austenitic steels, the wear resistance of the alloys at room temperature is rather low. The surface corrosion resistance of HEAs is comparable to austenitic steels; nevertheless HEAs are more susceptible to pitting in chloride containing solutions. © 2021, The Author(s).

  • 2021 • 133
    Electrocatalytic oxidation of 2-propanol on PtxIr100-x bifunctional electrocatalysts – A thin-film materials library study
    Kormányos, A. and Savan, A. and Ludwig, Al. and Speck, F.D. and Mayrhofer, K.J.J. and Cherevko, S.
    JOURNAL OF CATALYSIS. Volume: 396 (2021)
    view abstract10.1016/j.jcat.2021.02.021

    Due to the high demand for renewable and infrastructure compatible energy conversion and storage technologies, research on organic fuel cells receives increasing interest again recently. Organic fuels such as alcohols provide an attractive avenue to overcome the drawbacks of hydrogen as an energy carrier. Particularly interesting are secondary alcohols that almost exclusively form ketones as the final oxidation product, as they can be utilized in “zero emission” concepts without CO2 as a by-product. The state-of-the-art electrocatalyst in secondary alcohol oxidation is Pt-Ru, which demonstrates low onset potentials for the oxidation of the most facile secondary alcohol isopropanol. Yet, the achievable current densities are still relatively low and decrease rapidly due to the formed product acetone, which can poison the catalyst surface over time. Therefore, there is an inevitable need for the development of novel electrocatalyst materials circumventing these challenges. In this study, we employ a high-throughput electrochemical approach coupled to on-line inductively-coupled plasma mass spectrometry to map the composition-dependent activity and stability of PtxIr100-x alloy electrocatalysts toward the electro-oxidation of isopropanol. The activity and stability of magnetron sputtered PtxIr100-x material libraries are studied in 0.1 M HClO4 both in the absence and presence of isopropanol. The highest current densities are achieved for the sample containing the least amount of Ir (3.4 at.%), with a continuous decrease with the increasing amount of Ir. The alloys are inactive towards the oxidation of isopropanol when the amount of Ir exceeded 80 at%. The presence of isopropanol also has a notable effect on stability: while dissolution rates do not change in the case of pure Pt and Ir, a significant increase in stability is observed for the PtxIr100-x thin-film samples at all applied upper potential limits. This is explained by the strong adsorption of acetone on the surface of the catalyst that inhibits the formation of surface oxides. © 2021 Elsevier Inc.

  • 2021 • 132
    The hidden structure dependence of the chemical life of dislocations
    Zhou, X. and Mianroodi, J.R. and Da Silva, A.K. and Koenig, T. and Thompson, G.B. and Shanthraj, P. and Ponge, D. and Gault, B. and Svendsen, B. and Raabe, D.
    SCIENCE ADVANCES. Volume: 7 (2021)
    view abstract10.1126/sciadv.abf0563

    Dislocations are one-dimensional defects in crystals, enabling their deformation, mechanical response, and transport properties. Less well known is their influence on material chemistry. The severe lattice distortion at these defects drives solute segregation to them, resulting in strong, localized spatial variations in chemistry that determine microstructure and material behavior. Recent advances in atomic-scale characterization methods have made it possible to quantitatively resolve defect types and segregation chemistry. As shown here for a Pt-Au model alloy, we observe a wide range of defect-specific solute (Au) decoration patterns of much greater variety and complexity than expected from the Cottrell cloud picture. The solute decoration of the dislocations can be up to half an order of magnitude higher than expected from classical theory, and the differences are determined by their structure, mutual alignment, and distortion field. This opens up pathways to use dislocations for the compositional and structural nanoscale design of advanced materials. © 2021 American Association for the Advancement of Science. All rights reserved.

  • 2021 • 131
    Orientation-dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi
    Choi, W.S. and Pang, E.L. and Ko, W.-S. and Jun, H. and Bong, H.J. and Kirchlechner, C. and Raabe, D. and Choi, P.-P.
    ACTA MATERIALIA. Volume: 208 (2021)
    view abstract10.1016/j.actamat.2021.116731

    Understanding the orientation-dependent deformation behavior of NiTi shape-memory alloys at small length scales is of importance for designing nano- and micro-electromechanical systems. However, a complete understanding of the orientation- and size-dependent competition between the various modes of slip, deformation twinning, and martensitic transformation in NiTi shape-memory alloys is still lacking, especially in micron-scale specimens. In the present study, we perform micro-compression tests on [001]- and [112]-oriented micro-pillars of a solutionized Ti-49.9at.% Ni alloy. Post-mortem TEM analysis of the deformed pillars reveal that the operating plastic deformation modes are {011}<100> slip and {114}<221¯> deformation twinning, which compete with the martensitic transformation, depending on the crystal orientation. Furthermore, in both experiments and molecular dynamics simulations, we consistently find residual B19′ martensite in a herringbone microstructure composed of finely spaced (001)B19′ compound twins instead of the generally assumed [011]B19′ type II twins common in bulk samples, suggesting that the operative martensitic transformation mode may be size-dependent. Schmid factors in compression are calculated for all commonly reported slip, deformation twinning, and martensitic transformation modes as a function of crystallographic orientation, which rationalize the orientation-dependent competition between these deformation modes. © 2021 Acta Materialia Inc.

  • 2021 • 130
    Elemental segregation to lattice defects in the CrMnFeCoNi high-entropy alloy during high temperature exposures
    Heczko, M. and Mazánová, V. and Gröger, R. and Záležák, T. and Hooshmand, M.S. and George, E.P. and Mills, M.J. and Dlouhý, A.
    ACTA MATERIALIA. Volume: 208 (2021)
    view abstract10.1016/j.actamat.2021.116719

    The influence of small plastic pre-strains on the elevated-temperature stability and microstructure of the equiatomic CrMnFeCoNi FCC solid solution is investigated. Particular attention is given to whether any of the alloy elements segregate to individual dislocations. To that end, CrMnFeCoNi samples were first deformed in tension at room temperature to plastic strains of 0.2 and 2.3%, and subsequently annealed at 973 K for 800 hours. The pre-strains activated planar slip of 1/2<110>-type dislocations on {111}-type glide planes. Interactions of this planar slip with special Σ3 grain boundaries formed a large number of dislocation segments with a <110>-type crystallographic orientation suitable for a credible end-on analysis of dislocation cores in HR-STEM. The cores of the 1/2<110> dislocations pushed up against the investigated grain boundaries were found to be close to the compact configuration. Within the sensitivity of the Super-X EDS mapping, no concentration gradient was detected near dislocations that would indicate enrichment at dislocation cores of any of the elemental constituents of the alloy after the pre-deformation and annealing. However, a Cr-rich tetragonal sigma phase nucleated and grew at grain boundary triple junctions during this anneal, processes that were not accelerated by the enhanced dislocation density present after pre-strain. A clear chromium gradient was observed in the Cr-depleted zones near grain boundaries suggesting that Cr transport occurred by relatively slow diffusion from the bulk to the grain boundaries and then by relatively fast diffusion along the grain boundaries to the precipitates. Accompanying the Cr depletion near grain boundaries is a simultaneous Ni and Mn enrichment, which promotes formation of the L10 NiMn phase that is observed on the grain boundaries after prolonged annealing. © 2021

  • 2021 • 129
    In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach
    Duarte, M.J. and Fang, X. and Rao, J. and Krieger, W. and Brinckmann, S. and Dehm, G.
    JOURNAL OF MATERIALS SCIENCE. Volume: 56 (2021)
    view abstract10.1007/s10853-020-05749-2

    The effects of hydrogen in metals are a pressing issue causing severe economic losses due to material deterioration by hydrogen embrittlement. A crucial understanding of the interactions of hydrogen with different microstructure features can be reached by nanoindentation due to the small volumes probed. Even more, in situ testing while charging the sample with hydrogen prevents the formation of concentration gradients due to hydrogen desorption. Two custom electrochemical cells for in situ testing were built in-house to charge the sample with hydrogen during nanoindentation: “front-side” charging with the sample and the indenter tip immersed into the electrolyte, and “back-side” charging where the analyzed region is never in contact with the solution. During front-side charging, surface degradation often occurs which also negatively influences analyses after hydrogen charging. The back-side charging approach proposed in this work is a promising technique for studying in situ the effects of hydrogen in alloys under mechanical loads, while completely excluding the influence of the electrolyte on the nanoindented surface. Hydrogen diffusion from the charged back-side toward the testing surface is here demonstrated by Kelvin probe measurements in ferritic FeCr alloys, used as a case study due to the high mobility of hydrogen in the bcc lattice. During nanoindentation, a reduction on the shear stress necessary for dislocations nucleation due to hydrogen was observed using both setups; however, the quantitative data differs and a contradictory behavior was found in hardness measurements. Finally, some guidelines for the use of both approaches and a summary of their advantages and disadvantages are presented. Graphical abstract: [Figure not available: see fulltext.] © 2021, The Author(s).

  • 2021 • 128
    Discovery and Implications of Hidden Atomic-Scale Structure in a Metallic Meteorite
    Kovács, A. and Lewis, L.H. and Palanisamy, D. and Denneulin, T. and Schwedt, A. and Scott, E.R.D. and Gault, B. and Raabe, D. and Dunin-Borkowski, R.E. and Charilaou, M.
    NANO LETTERS. Volume: 21 (2021)
    view abstract10.1021/acs.nanolett.1c02573

    Iron and its alloys have made modern civilization possible, with metallic meteorites providing one of the human's earliest sources of usable iron as well as providing a window into our solar system's billion-year history. Here highest-resolution tools reveal the existence of a previously hidden FeNi nanophase within the extremely slowly cooled metallic meteorite NWA 6259. This new nanophase exists alongside Ni-poor and Ni-rich nanoprecipitates within a matrix of tetrataenite, the uniaxial, chemically ordered form of FeNi. The ferromagnetic nature of the nanoprecipitates combined with the antiferromagnetic character of the FeNi nanophases gives rise to a complex magnetic state that evolves dramatically with temperature. These observations extend and possibly alter our understanding of celestial metallurgy, provide new knowledge concerning the archetypal Fe-Ni phase diagram and supply new information for the development of new types of sustainable, technologically critical high-energy magnets. ©

  • 2021 • 127
    Simulation of the θ’ precipitation process with interfacial anisotropy effects in Al-Cu alloys
    Ta, N. and Bilal, M.U. and Häusler, I. and Saxena, A. and Lin, Y.-Y. and Schleifer, F. and Fleck, M. and Glatzel, U. and Skrotzki, B. and Kamachali, R.D.
    MATERIALS. Volume: 14 (2021)
    view abstract10.3390/ma14051280

    The effects of anisotropic interfacial properties and heterogeneous elasticity on the growth and ripening of plate-like θ’-phase (Al2Cu) in Al-1.69 at.% Cu alloy are studied. Multi-phase-field simulations are conducted and discussed in comparison with aging experiments. The precipi-tate/matrix interface is considered to be anisotropic in terms of its energy and mobility. We find that the additional incorporation of an anisotropic interfacial mobility in conjunction with the elastic anisotropy result in substantially larger aspect ratios of the precipitates closer to the experimental observations. The anisotropy of the interfacial energy shows comparably small effect on the precip-itate’s aspect ratio but changes the interface’s shape at the rim. The effect of the chemo-mechanical coupling, i.e., the composition dependence of the elastic constants, is studied as well. We show that the inverse ripening phenomenon, recently evidenced for δ’ precipitates in Al-Li alloys (Park et al. Sci. Rep. 2019, 9, 3981), does not establish for the θ’ precipitates. This is because of the anisotropic stress fields built around the θ’ precipitates, stemming from the precipitate’s shape and the interaction among different variants of the θ’ precipitate, that disturb the chemo-mechanical effects. These results show that the chemo-mechanical effects on the precipitation ripening strongly depend on the degree of sphericity and elastic isotropy of the precipitate and matrix phases. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2021 • 126
    Properties of α-Brass Nanoparticles II: Structure and Composition
    Weinreich, J. and Paleico, M.L. and Behler, J.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 125 (2021)
    view abstract10.1021/acs.jpcc.1c02314

    Nanoparticles have become increasingly interesting for a wide range of applications because in principle it is possible to tailor their properties by controlling size, shape, and composition. One of these applications is heterogeneous catalysis, and a fundamental understanding of the structural details of the nanoparticles is essential for any knowledge-based improvement of reactivity and selectivity. In this work, we investigate the atomic structure of brass nanoparticles containing up to 5000 atoms as a typical example for a binary alloy consisting of Cu and Zn. As systems of this size are too large for electronic structure calculations, in our simulations, we use a recently parameterized machine learning potential providing close to density functional theory accuracy. This potential is employed for a structural characterization as a function of chemical composition by various types of simulations such as Monte Carlo in the semigrand canonical ensemble and simulated annealing molecular dynamics. Our analysis reveals that the distribution of both elements in the nanoparticles is inhomogeneous, and zinc accumulates in the outermost layer, while the first subsurface layer shows an enrichment of copper. Only for high zinc concentrations, alloying can be found in the interior of the nanoparticles, and regular patterns corresponding to crystalline bulk phases of α-brass can then be observed. The surfaces of the investigated clusters exhibit well-ordered single-crystal facets, which can give rise to grain boundaries inside the clusters. The melting temperature of the nanoparticles is found to decrease with increasing zinc-atom fraction, a trend which is well known also for the bulk phase diagram of brass. © 2021 The Authors. Published by American Chemical Society.

  • 2021 • 125
    Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**
    Pedersen, J.K. and Clausen, C.M. and Krysiak, O.A. and Xiao, B. and Batchelor, T.A.A. and Löffler, T. and Mints, V.A. and Banko, L. and Arenz, M. and Savan, A. and Schuhmann, W. and Ludwig, Al. and Rossmeisl, J.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202108116

    Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag–Pd, Ir–Pt, and Pd–Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

  • 2021 • 124
    Nitrogen and Oxygen Functionalization of Multi-walled Carbon Nanotubes for Tuning the Bifunctional Oxygen Reduction/Oxygen Evolution Performance of Supported FeCo Oxide Nanoparticles
    Kazakova, M.A. and Koul, A. and Golubtsov, G.V. and Selyutin, A.G. and Ishchenko, A.V. and Kvon, R.I. and Kolesov, B.A. and Schuhmann, W. and Morales, D.M.
    CHEMELECTROCHEM. Volume: (2021)
    view abstract10.1002/celc.202100556

    The combination of nanostructured transition metal oxides and carbon materials is a promising approach to obtain inexpensive, highly efficient, and stable bifunctional electrocatalysts for the oxygen reduction (ORR) and the oxygen evolution (OER) reactions. We present a strategy for improving the bifunctional ORR/OER activity of supported FeCoOx nanoparticles by tuning the properties of multi-walled carbon nanotubes (MWCNT) via nitrogen doping during their synthesis in the presence of ammonia and subsequent oxidative functionalization. In-depth structural characterization indicates that oxidative treatment provides fine control of the dispersion and localization of FeCoOx nanoparticles in MWCNT, while the optimal degree of nitrogen doping leads to increased bifunctional activity due to enhanced electrical conductivity as well as improved catalyst stability, in both OER and ORR conditions, for nanoparticles formed by two different synthesis routes. The findings reported can be strategically considered for the design of high-performance reversible ORR/OER electrocatalysts. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH

  • 2020 • 123
    Nanoglass–Nanocrystal Composite—a Novel Material Class for Enhanced Strength–Plasticity Synergy
    Katnagallu, S. and Wu, G. and Singh, S.P. and Nandam, S.H. and Xia, W. and Stephenson, L.T. and Gleiter, H. and Schwaiger, R. and Hahn, H. and Herbig, M. and Raabe, D. and Gault, B. and Balachandran, S.
    SMALL. Volume: 16 (2020)
    view abstract10.1002/smll.202004400

    The properties of a material can be engineered by manipulating its atomic and chemical architecture. Nanoglasses which have been recently invented and comprise nanosized glassy particles separated by amorphous interfaces, have shown promising properties. A potential way to exploit the structural benefits of nanoglasses and of nanocrystalline materials is to optimize the composition to obtain crystals forming within the glassy particles. Here, a metastable Fe-10 at% Sc nanoglass is synthesized. A complex hierarchical microstructure is evidenced experimentally at the atomic scale. This bulk material comprises grains of a Fe90Sc10 amorphous matrix separated by an amorphous interfacial network enriched and likely stabilized by hydrogen, and property-enhancing pure-Fe nanocrystals self-assembled within the matrix. This composite structure leads a yield strength above 2.5 GPa with an exceptional quasi-homogeneous plastic flow of more than 60% in compression. This work opens new pathways to design materials with even superior properties. © 2020 The Authors. Published by Wiley-VCH GmbH

  • 2020 • 122
    Formation of a 2D Meta-stable Oxide by Differential Oxidation of AgCu Alloys
    Schweinar, K. and Beeg, S. and Hartwig, C. and Rajamathi, C.R. and Kasian, O. and Piccinin, S. and Prieto, M.J. and Tanase, L.C. and Gottlob, D.M. and Schmidt, T. and Raabe, D. and Schlögl, R. and Gault, B. and Jones, T.E. and Greiner, M.T.
    ACS APPLIED MATERIALS AND INTERFACES. Volume: 12 (2020)
    view abstract10.1021/acsami.0c03963

    Metal alloy catalysts can develop complex surface structures when exposed to reactive atmospheres. The structures of the resulting surfaces have intricate relationships with a myriad of factors, such as the affinity of the individual alloying elements to the components of the gas atmosphere and the bond strengths of the multitude of low-energy surface compounds that can be formed. Identifying the atomic structure of such surfaces is a prerequisite for establishing structure-property relationships, as well as for modeling such catalysts in ab initio calculations. Here, we show that an alloy, consisting of an oxophilic metal (Cu) diluted into a noble metal (Ag), forms a meta-stable two-dimensional oxide monolayer, when the alloy is subjected to oxidative reaction conditions. The presence of this oxide is correlated with selectivity in the corresponding test reaction of ethylene epoxidation. In the present study, using a combination of in situ, ex situ, and theoretical methods (NAP-XPS, XPEEM, LEED, and DFT), we determine the structure to be a two-dimensional analogue of Cu2O, resembling a single lattice plane of Cu2O. The overlayer holds a pseudo-epitaxial relationship with the underlying noble metal. Spectroscopic evidence shows that the oxide's electronic structure is qualitatively distinct from its three-dimensional counterpart, and because of weak electronic coupling with the underlying noble metal, it exhibits metallic properties. These findings provide precise details of this peculiar structure and valuable insights into how alloying can enhance catalytic properties. Copyright © 2020 American Chemical Society.

  • 2020 • 121
    Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment
    Wang, H. and Jürgensen, J. and Decker, P. and Hu, Z. and Yan, K. and Gurevich, E.L. and Ostendorf, A.
    APPLIED SURFACE SCIENCE. Volume: 501 (2020)
    view abstract10.1016/j.apsusc.2019.144338

    Laser shock peening with femtosecond laser was used to improve the corrosion resistance of biomedical NiTi alloy without protective coating in the air environment. The energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) based analysis showed that the laser ablation could produce titanium oxide layer and femtosecond laser shock peening (FsLSP) can generate residual stress in the surface layer of NiTi alloy. The FsLSP improved the corrosion resistance of NiTi in 3.5% NaCl solution and Hank's solution and also prevented the formation of corrosion cracks and pits during corrosion testing. The reasons for the improvement of corrosion behavior may be the generation of residual stress and titanium oxide film during the laser surface treatment. © 2019 Elsevier B.V.

  • 2020 • 120
    Effect of Oxygen on High-temperature Phase Equilibria in Ternary Ti-Al-Nb Alloys
    Distl, B. and Dehm, G. and Stein, F.
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE. Volume: 646 (2020)
    view abstract10.1002/zaac.202000098

    Alloys based on titanium aluminides received a lot of attention because of their capability to substitute Ni-based superalloys in high-temperature applications. However, the phase equilibria between the main microstructure constituents (αTi), (βTi), γ (TiAl) and α2(Ti3Al) can be shifted significantly by impurities such as oxygen especially at high temperatures. This behavior is investigated on the tie-triangle (αTi) + (βTi) + γ (TiAl) in the ternary Ti-Al-Nb system at 1300 °C. An explanation for this behavior could be the occupation of octahedral voids by impurities in certain phases. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 119
    Structural stability of Co–V intermetallic phases and thermodynamic description of the Co–V system
    Wang, P. and Hammerschmidt, T. and Kattner, U.R. and Olson, G.B.
    CALPHAD: COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY. Volume: 68 (2020)
    view abstract10.1016/j.calphad.2019.101729

    The Co–V system has been reviewed. Density functional theory (DFT) calculations using the generalized gradient approximation (GGA) were used to obtain the energies for the end-members for all three intermediate phases, Co3V, σ and CoV3. Results from DFT calculations considering spin polarization were used to evaluate the CALPHAD (Calculation of phase diagrams) model parameters. The method to evaluate the contribution of the magnetism to the energies of Co-rich compounds that was introduced in our previous work is presented in more detail in the present work. For the description of the σ phase, the magnetic part of the total energy is included in the description of the pure Co end-member compound resulting in a non-linear description of the magnetic contribution over composition. The calculated phase diagram obtained from the present CALPHAD description is in good agreement with the experimental data. The metastable FCC-L12 phase diagram was calculated and compared with experimental data. © 2019 Elsevier Ltd

  • 2020 • 118
    Femtosecond laser shock peening on the surface of NiTi shape memory alloy
    Wang, H. and Gurevich, E.L. and Ostendorf, A.
    PROCEDIA CIRP. Volume: 94 (2020)
    view abstract10.1016/j.procir.2020.09.071

    Laser shock peening with a femtosecond laser system was presented in this research work. The NiTi shape memory alloy was processed by the femtosecond laser shock peening (FsLSP) treatment without a protective layer in the air. Femtosecond laser shock peening is a new surface technology, which can induce an intense shock wave with low single laser pulse energy under atmospheric conditions. The surface topography, roughness, microhardness, and wear resistance were measured on the surface of NiTi alloy before and after femtosecond laser peening treatment. The results showed that the surface roughness and microhardness could be increased after femtosecond laser shock peening, which may be due to the laser ablation and micro-plastic deformation induced by the shock wave. The wear property of NiTi alloy was improved, which may be attributed to the FsLSPed surface texturing and enhancement of surface microhardness. © 2020 The Authors. Published by Elsevier B.V.

  • 2020 • 117
    Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure
    Göbel, C. and Schmidt, S. and Froese, C. and Fu, Q. and Chen, Y.-T. and Pan, Q. and Muhler, M.
    JOURNAL OF CATALYSIS. Volume: 383 (2020)
    view abstract10.1016/j.jcat.2020.01.004

    Bimetallic Co-Cu catalysts are widely applied in higher alcohol synthesis (HAS), but the formation of the final active structure has not yet been fully clarified, especially for Co-rich catalysts. We investigated the structural evolution of a Co-Cu catalyst (Co:Cu = 2) from the hydrotalcite precursor containing additional Al3+ and Zn2+ to the final active state after 80 h under reaction conditions at 280 °C and 60 bar. The reconstruction of the bimetallic Co-Cu nanoparticles obtained by H2 reduction was induced by the feed gas consisting of an equimolar H2 and CO syngas mixture resulting in fast phase separation and sintering of metallic Cu0 and Co0 in the first 2 h time on stream (TOS) and a continuous carbidization of Co0 forming Co2C and its sintering until steady state was reached after 40 h TOS. An intergrowth of metallic Cu0 nanoparticles with Co2C nanoparticles was observed to occur under reaction conditions. The high selectivity to oxygenates amounting to 41% compared with 29% to hydrocarbons is ascribed to the multi-functional Co2C/Cu0 interface enabling dissociative CO adsorption, hydrogenation and CO insertion. The formation of hydrogenated carbon species (CxHy) originating from dissociative CO chemisorption is assumed to be favored by hydrogen spillover from Cu0 to Co2C. The adsorption sites for molecular CO provided by both Cu0 and Co2C facilitate its insertion into the CxHy intermediates thus leading to a higher selectivity to alcohols following the Anderson-Schulz-Flory distribution. © 2020 Elsevier Inc.

  • 2020 • 116
    Unfolding the complexity of phonon quasi-particle physics in disordered materials
    Mu, S. and Olsen, R.J. and Dutta, B. and Lindsay, L. and Samolyuk, G.D. and Berlijn, T. and Specht, E.D. and Jin, K. and Bei, H. and Hickel, T. and Larson, B.C. and Stocks, G.M.
    NPJ COMPUTATIONAL MATERIALS. Volume: 6 (2020)
    view abstract10.1038/s41524-020-0271-3

    The concept of quasi-particles forms the theoretical basis of our microscopic understanding of emergent phenomena associated with quantum-mechanical many-body interactions. However, the quasi-particle theory in disordered materials has proven difficult, resulting in the predominance of mean-field solutions. Here, we report first-principles phonon calculations and inelastic X-ray and neutron-scattering measurements on equiatomic alloys (NiCo, NiFe, AgPd, and NiFeCo) with force-constant dominant disorder—confronting a key 50-year-old assumption in the Hamiltonian of all mean-field quasi-particle solutions for off-diagonal disorder. Our results have revealed the presence of a large, and heretofore unrecognized, impact of local chemical environments on the distribution of the species-pair-resolved force-constant disorder that can dominate phonon scattering. This discovery not only identifies a critical analysis issue that has broad implications for other elementary excitations, such as magnons and skyrmions in magnetic alloys, but also provides an important tool for the design of materials with ultralow thermal conductivities. © 2020, The Author(s).

  • 2020 • 115
    Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy
    Esakkiraja, N. and Gupta, A. and Jayaram, V. and Hickel, T. and Divinski, S.V. and Paul, A.
    ACTA MATERIALIA. Volume: 195 (2020)
    view abstract10.1016/j.actamat.2020.04.016

    Composition-dependent diffusion coefficients are determined in B2-Ni(CoPt)Al system following the pseudo-binary and pseudo-ternary diffusion couple methods, which would not be possible otherwise in a quaternary inhomogeneous material fulfilling the conditions to solve the equations developed based on the Onsager formalism. The end-member compositions to produce ideal/near-ideal diffusion profiles are chosen based on thermodynamic details. The pseudo-binary interdiffusion coefficients of Ni and Al decrease in the presence of Co but increase in the presence of Pt. The pseudo-ternary interdiffusion coefficients indicate that the main interdiffusion coefficients increase significantly in the presence of Pt. Marginal changes of the cross interdiffusion coefficients substantiate a minor change of the diffusional interactions between the components. The thermodynamic driving forces show opposite trends with respect to composition as compared to the changes of the interdiffusion coefficients advocating a dominating role of the Pt(Co)-induced modifications of point defect concentrations. DFT-based calculations revealed that Pt alloying increases the Ni vacancy concentration and decreases the activation energy for the triple defect diffusion mechanism. These findings explain the increase in the thickness of the interdiffusion zone between the B2-Ni(Pt)Al bond coat and the single crystal superalloy René N5 because of Pt addition. Furthermore, the EPMA and TEM analyses reveal the growth of refractory elements-enriched precipitates. © 2020 Acta Materialia Inc.

  • 2020 • 114
    Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi
    Tirunilai, A.S. and Hanemann, T. and Reinhart, C. and Tschan, V. and Weiss, K.-P. and Laplanche, G. and Freudenberger, J. and Heilmaier, M. and Kauffmann, A.
    MATERIALS SCIENCE AND ENGINEERING A. Volume: 783 (2020)
    view abstract10.1016/j.msea.2020.139290

    The current work compares the deformation behavior of CoCrFeMnNi and CoCrNi in the temperature interval between 295 K and 8 K through a series of quasi-static tensile tests. Temperature-dependent yield stress variation was found to be similarly high in these two alloys. Previous investigations only extended down to 77 K and showed that a small amount of ε-martensite was formed in CoCrNi while this phase was not observed in CoCrFeMnNi. The present study extends these investigations down to 8 K where similar low levels of ε-martensite were presently detected. Based on this result, a rough assessment has been made estimating the importance of deformation twinning to the strength. The relative work hardening rates of CoCrFeMnNi and CoCrNi were comparable in value despite the differences in ε-martensite formation during deformation. CoCrFeMnNi deforms by dislocation slip and deformation twinning while deformation in CoCrNi is also accommodated by the formation of ε-martensite at cryogenic temperatures. Additionally, CoNi, a solid solution from the Co–Cr–Fe–Mn–Ni system with low strength, was used for comparison, showing contrasting deformation behavior at cryogenic temperatures. © 2020 Elsevier B.V.

  • 2020 • 113
    Sintering and biocompatibility of blended elemental Ti-xNb alloys
    Chen, Y. and Han, P. and Dehghan-Manshadi, A. and Kent, D. and Ehtemam-Haghighi, S. and Jowers, C. and Bermingham, M. and Li, T. and Cooper-White, J. and Dargusch, M.S.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS. Volume: 104 (2020)
    view abstract10.1016/j.jmbbm.2020.103691

    Titanium-niobium (Ti–Nb) alloys have great potential for biomedical applications due to their superior biocompatibility and mechanical properties that match closely to human bone. Powder metallurgy is an ideal technology for efficient manufacture of titanium alloys to generate net-shape, intricately featured and porous components. This work reports on the effects of Nb concentrations on sintered Ti-xNb alloys with the aim to establish an optimal composition in respect to mechanical and biological performances. Ti-xNb alloys with 33, 40, 56 and 66 wt% Nb were fabricated from elemental powders and the sintering response, mechanical properties, microstructures and biocompatibility assessed and compared to conventional commercial purity titanium (CPTi). The sintered densities for all Ti-xNb compositions were around 95%, reducing slightly with increasing Nb due to increasing open porosity. Higher Nb levels retarded sintering leading to more inhomogeneous phase and pore distributions. The compressive strength decreased with increasing Nb, while all Ti-xNb alloys displayed higher strengths than CPTi except the Ti–66Nb alloy. The Young's moduli of the Ti-xNb alloys with ≥40 wt% Nb were substantially lower (30–50%) than CPTi. In-vitro cell culture testing revealed excellent biocompatibility for all Ti-xNb alloys comparable or better than tissue culture plate and CPTi controls, with the Ti–40Nb alloy exhibiting superior cell-material interactions. In view of its mechanical and biological performance, the Ti–40Nb composition is most promising for hard tissue engineering applications. © 2020

  • 2020 • 112
    Electroenzymatic Nitrogen Fixation Using a MoFe Protein System Immobilized in an Organic Redox Polymer
    Lee, Y.S. and Ruff, A. and Cai, R. and Lim, K. and Schuhmann, W. and Minteer, S.D.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 59 (2020)
    view abstract10.1002/anie.202007198

    We report an organic redox-polymer-based electroenzymatic nitrogen fixation system using a metal-free redox polymer, namely neutral-red-modified poly(glycidyl methacrylate-co-methylmethacrylate-co-poly(ethyleneglycol)methacrylate) with a low redox potential of −0.58 V vs. SCE. The stable and efficient electric wiring of nitrogenase within the redox polymer matrix enables mediated bioelectrocatalysis of N3−, NO2− and N2 to NH3 catalyzed by the MoFe protein via the polymer-bound redox moieties distributed in the polymer matrix in the absence of the Fe protein. Bulk bioelectrosynthetic experiments produced 209±30 nmol NH3 nmol MoFe−1 h−1 from N2 reduction. 15N2 labeling experiments and NMR analysis were performed to confirm biosynthetic N2 reduction to NH3. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

  • 2020 • 111
    The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions
    Morales, D.M. and Kazakova, M.A. and Purcel, M. and Masa, J. and Schuhmann, W.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY. Volume: 24 (2020)
    view abstract10.1007/s10008-020-04667-2

    Successful design of reversible oxygen electrocatalysts does not only require to consider their activity towards the oxygen reduction (ORR) and the oxygen evolution reactions (OER), but also their electrochemical stability at alternating ORR and OER operating conditions, which is important for potential applications in reversible electrolyzers/fuel cells or metal/air batteries. We show that the combination of catalyst materials containing stable ORR active sites with those containing stable OER active sites may result in a stable ORR/OER catalyst if each of the active components can satisfy the current demand of their respective reaction. We compare the ORR/OER performances of oxides of Mn (stable ORR active sites), Fe (stable OER active sites), and bimetallic Mn0.5Fe0.5 (reversible ORR/OER catalyst) supported on oxidized multi-walled carbon nanotubes. Despite the instability of Mn and Fe oxide for the OER and the ORR, respectively, Mn0.5Fe0.5 exhibits high stability for both reactions. © 2020, The Author(s).

  • 2020 • 110
    Probing catalytic surfaces by correlative scanning photoemission electron microscopy and atom probe tomography
    Schweinar, K. and Nicholls, R.L. and Rajamathi, C.R. and Zeller, P. and Amati, M. and Gregoratti, L. and Raabe, D. and Greiner, M. and Gault, B. and Kasian, O.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 8 (2020)
    view abstract10.1039/c9ta10818a

    The chemical composition and the electronic state of the surface of alloys or mixed oxides with enhanced electrocatalytic properties are usually heterogeneous at the nanoscale. The non-uniform distribution of the potential across their surface affects both activity and stability. Studying such heterogeneities at the relevant length scale is crucial for understanding the relationships between structure and catalytic behaviour. Here, we demonstrate an experimental approach combining scanning photoemission electron microscopy and atom probe tomography performed at identical locations to characterise the surface's structure and oxidation states, and the chemical composition of the surface and sub-surface regions. Showcased on an Ir-Ru thermally grown oxide, an efficient catalyst for the anodic oxygen evolution reaction, the complementary techniques yield consistent results in terms of the determined surface oxidation states and local oxide stoichiometry. Significant chemical heterogeneities in the sputter-deposited Ir-Ru alloy thin films govern the oxide's chemistry, observed after thermal oxidation both laterally and vertically. While the oxide grains have a composition of Ir0.94Ru0.06O2, the composition in the grain boundary region varies from Ir0.70Ru0.30O2 to Ir0.40Ru0.60O2 and eventually to Ir0.75Ru0.25O2 from the top surface into the depth. The influence of such compositional non-uniformities on the catalytic performance of the material is discussed, along with possible engineering levers for the synthesis of more stable and reactive mixed oxides. The proposed method provides a framework for investigating materials of interest in the field of electrocatalysis and beyond. This journal is © The Royal Society of Chemistry.

  • 2020 • 109
    Effects of Mo on the mechanical behavior of γ/γʹ-strengthened Co-Ti-based alloys
    Im, H.J. and Lee, S. and Choi, W.S. and Makineni, S.K. and Raabe, D. and Ko, W.-S. and Choi, P.-P.
    ACTA MATERIALIA. Volume: 197 (2020)
    view abstract10.1016/j.actamat.2020.07.037

    We investigated the flow behavior of γ/γʹ-strengthened Co-12Ti and Co-12Ti-4Mo (at.%) alloys at room and elevated temperatures (up to 900°C) by electron microscopy and density functional theory. The Mo-added alloy exhibited an enhanced compressive yield strength and strain hardening behavior as compared to the reference binary alloy. This behavior could be attributed to a ~25% larger γʹ volume fraction and ~7% higher planar fault energies in Co-12Ti-4Mo. Using electron channeling contrast imaging, we observed interrupted slip bands in the Co-12Ti-4Mo alloy deformed to a strain of 6%, which led to enhanced strain hardening, in contrast to extended slip bands along {111} planes in the Co-12Ti alloy. Interrupted slip band formation in Co-12Ti-4Mo could be explained by rapid exhaustion of dislocation sources and a higher energy barrier required to cut the γʹ precipitates. These effects are due to a reduced γ channel width and substantial hardening effect of γʹ-Co3(Ti,Mo) in the ternary alloy as well as due to the large shear modulus difference between γʹ and γ. © 2020

  • 2020 • 108
    The steady-state kinetics of CO hydrogenation to higher alcohols over a bulk Co-Cu catalyst
    Göbel, C. and Schmidt, S. and Froese, C. and Bujara, T. and Viktor Scherer and Muhler, M.
    JOURNAL OF CATALYSIS. Volume: (2020)
    view abstract10.1016/j.jcat.2020.10.017

    The kinetics of higher alcohol synthesis was investigated using a hydrotalcite-derived Co-Cu-based catalyst aiming at a deeper understanding of the complex reaction network. At steady state similar chain growth probabilities of about 0.4 according to the Anderson-Schulz-Flory distribution were observed for alcohols, hydrocarbons and olefins indicating common intermediates. Alkanes were found to be formed consecutively from primarily formed olefins. The observed decrease of the selectivities to alcohols with increasing CO conversion at higher temperatures and higher residence times is ascribed to an increased availability of adsorbed atomic hydrogen, which decreases the saturated coverage of CO-derived CxHyOz species favoring hydrocarbon formation. Correspondingly, reaction orders of 0 and 0.8 for CO and H2, respectively, were derived based on a power-law approach including an apparent activation energy of 140 kJ mol−1. A reaction network based on the CO insertion factor was established, in which the competing reactions β-hydrogen elimination, chain growth and CO insertion proceed from common adsorbed CxHy intermediates. Selective higher alcohol formation was favored at low temperatures and short residence times, high pressures and a moderate H2:CO ratio of 1 requiring a compromise between conversion and selectivity. © 2020 Elsevier Inc.

  • 2020 • 107
    Crystal structure and composition dependence of mechanical properties of single-crystalline NbCo2 Laves phase
    Luo, W. and Kirchlechner, C. and Zavašnik, J. and Lu, W. and Dehm, G. and Stein, F.
    ACTA MATERIALIA. Volume: 184 (2020)
    view abstract10.1016/j.actamat.2019.11.036

    Extended diffusion layers of the cubic C15 and hexagonal C14 and C36 NbCo2 Laves phases with concentration gradients covering their entire homogeneity ranges were produced by the diffusion couple technique. Single-phase and single-crystalline micropillars of the cubic and hexagonal NbCo2 Laves phases were prepared in the diffusion layers by focused ion beam (FIB) milling. The influence of chemical composition, structure type, orientation and pillar size on the deformation behavior and the critical resolved shear stress (CRSS) was studied by micropillar compression tests. The pillar orientation influences the activated slip systems, but the deformation behavior and the CRSS are independent of orientation. The deformation of the smallest NbCo2 micropillars (0.8 µm in top diameter) appears to be dislocation nucleation controlled and the CRSS approaches the theoretical shear stress for dislocation nucleation. The CRSS of the 0.8 µm-sized NbCo2 micropillars is nearly constant from 26 to 34 at.% Nb where the C15 structure is stable. It decreases as the composition approaches the Co-rich and Nb-rich boundaries of the homogeneity range where the C15 structure transforms to the C36 and the C14 structure, respectively. The decrease in the CRSS at these compositions is related to the reduction of shear modulus and stacking fault energy. As the pillar size increases, stochastic deformation behavior and large scatter in the CRSS values occur and obscure the composition effect on the CRSS. © 2019

  • 2020 • 106
    Microhardness and microabrasion behaviour of NiTi shape memory alloy after femtosecond laser shock peening without coating in air
    Wang, H. and Gurevich, E.L. and Ostendorf, A.
    PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING. Volume: 11273 (2020)
    view abstract10.1117/12.2543550

    The experiment study presents the influence of femtosecond laser shock peening (FsLSP) without a protective layer in the air on the surface hardness and surface mechanical property of NiTi shape memory alloy. Femtosecond laser shock peening is a new possibility of direct laser ablation without any protective layer under atmospheric conditions, which can produce intense shock waves with low pulse energy in the air. The average surface roughness values of the NiTi alloy samples were measured, because the surface roughness may affect its friction resistance. The results showed that the surface roughness of NiTi increased after femtosecond laser shock peening treatment. In comparison with the initial state, the coefficient of friction decreased and surface microhardness increased after femtosecond laser shock peening treatment with different FsLSP parameters. This improvement of wear properties may be attributed to the enhancement of surface microhardness and surface titanium oxide layer induced by the shock wave and laser ablation during FsLSP treatment. © 2020 SPIE.

  • 2020 • 105
    Deformation mechanisms in a superelastic NiTi alloy: An in-situ high resolution digital image correlation study
    Polatidis, E. and Šmíd, M. and Kuběna, I. and Hsu, W.-N. and Laplanche, G. and Van Swygenhoven, H.
    MATERIALS AND DESIGN. Volume: 191 (2020)
    view abstract10.1016/j.matdes.2020.108622

    An in-situ high resolution digital image correlation investigation during uniaxial tensile deformation reveals the recoverable and the non-recoverable strain mechanisms in a Ni51Ti49 alloy with a mean grain size of 35 μm. Recoverable strain is due to the martensitic transformation, for which more than one variant per grain can be activated. The majority of the activated variants exhibit high Schmid factor. The variant selection can be influenced by shear transmission across grain boundaries, when the geometrical compatibility between the neighboring habit plane variants is favourable; in these cases variants that do not have the highest Schmid factor, with respect to the macroscopically applied load, are activated. The experimentally determined transformation strains agree well with theoretical calculations for single crystals. The non-recoverable strain is due to deformation slip in austenite, twinning in martensite and residual martensite. The results are discussed in view of possible twinning modes that can occur in austenite resulting in significant non-recoverable strain. © 2020 The Authors

  • 2020 • 104
    Trivalent iron rich CoFe layered oxyhydroxides for electrochemical water oxidation
    Weiß, S. and Ertl, M. and Varhade, S.D. and Radha, A.V. and Schuhmann, W. and Breu, J. and Andronescu, C.
    ELECTROCHIMICA ACTA. Volume: 350 (2020)
    view abstract10.1016/j.electacta.2020.136256

    Layered double hydroxides (LDHs) are presently among the best-performing oxygen evolution reaction (OER) electrocatalysts in alkaline media. The high activity of LDHs is due to synergistic effects between two transition metals as well as the layered structure which facilitates electron transfer. Because of a perfect match with the size of interlayer carbonate a ratio of 2:1 for the di- and tri-valent octahedral cations is energetically preferred. Here we present a strategy, where first mixed valent (Co2+ 1-zFe2+ z)4 Fe3+ 2 - LDHs, with z values between 0 and 0.75 are synthesized, which are subsequently oxidized to Co2+Fe3+ LDH-type layered (oxy)hydroxides with an unusual high trivalent Fe content. Characterization of the chemically oxidized materials using bulk and surface techniques demonstrated the successful synthesis of LDH-like trivalent iron rich (Co2+)4-4z (Fe3+)2+4z (oxy)hydroxides with a final Fe content ranging from 33.3 to 83.3%. Current densities of up to 200 mA cm−2 were obtained at potentials lower than 1.7 V vs. RHE for (Co2+)4-4z (Fe3+)2+4z (oxy)hydroxides containing a maximum of 80% Fe. © 2020 Elsevier Ltd

  • 2020 • 103
    The importance of nanoscale confinement to electrocatalytic performance
    Wordsworth, J. and Benedetti, T.M. and Alinezhad, A. and Tilley, R.D. and Edwards, M.A. and Schuhmann, W. and Gooding, J.J.
    CHEMICAL SCIENCE. Volume: 11 (2020)
    view abstract10.1039/c9sc05611d

    Electrocatalytic nanoparticles that mimic the three-dimensional geometric architecture of enzymes where the reaction occurs down a substrate channel isolated from bulk solution, referred to herein as nanozymes, were used to explore the impact of nano-confinement on electrocatalytic reactions. Surfactant covered Pt-Ni nanozyme nanoparticles, with Ni etched from the nanoparticles, possess a nanoscale channel in which the active sites for electrocatalysis of oxygen reduction are located. Different particle compositions and etching parameters allowed synthesis of nanoparticles with different average substrate channel diameters that have varying amounts of nano-confinement. The results showed that in the kinetically limited regime at low overpotentials, the smaller the substrate channels the higher the specific activity of the electrocatalyst. This is attributed to higher concentrations of protons, relative to bulk solution, required to balance the potential inside the nano-confined channel. However, at higher overpotentials where limitation by mass transport of oxygen becomes important, the nanozymes with larger substrate channels showed higher electrocatalytic activity. A reaction-diffusion model revealed that the higher electrocatalytic activity at low overpotentials with smaller substrate channels can be explained by the higher concentration of protons. The model suggests that the dominant mode of mass transport to achieve these high concentrations is by migration, exemplifying how nano-confinement can be used to enhance reaction rates. Experimental and theoretical data show that under mass transport limiting potentials, the nano-confinement has no effect and the reaction only occurs at the entrance of the substrate channel at the nanoparticle surface. © The Royal Society of Chemistry.

  • 2020 • 102
    Micro-, macromechanical and aeroelastic investigation of glass - fiber based, lightweight turbomachinery components
    Iseni, S. and Prasad, M.R.G. and Hartmaier, A. and Holeczek, K. and Modeler, N. and di Mare, F.
    PROCEEDINGS OF THE ASME TURBO EXPO. Volume: 10A-2020 (2020)
    view abstract10.1115/GT2020-14951

    A major technical challenge for modern aero engines is the development of designs which reduce noise and emission whilst increasing aerodynamic efficiency and ensuring aeroelastic stability of low-temperature engine components such as fans and low-pressure compressors. Composites are used in aviation due to their excellent stiffness and strength properties, which also enable additional flexibility in the design process. The weight reduction of the turbomachine components, due to composite materials and lighter engines, is especially relevant for the design and developments of hybrid-electric or distributed propulsion systems [1]. To accomplish this, a representative volume element (RVE) of a glass-fiber reinforced polymer is created, describing the geometrical arrangement of the textile reinforcement structure within the polymer matrix. For both phases, realistic linear elastic properties are assumed. This RVE will be investigated with the finite element method under various loading conditions to assess its anisotropic elastic properties and also its damping behaviour for elastic waves. To study the influence of delamination on the mechanical properties, small defects will be introduced into the model at the interface between reinforcement and matrix. Based on this micromechanical approach, a constitutive model for the composite will be formulated that describes the anisotropic properties as well as the damping behaviour. This constitutive model is then used to describe the material response in a macro-mechanical model, which serves as the basis for an aeroelastic analysis of a 1/3-scaled high-speed fan using a conventional (Ti-6Al -4V) and fiber composite material. Copyright © 2020 ASME

  • 2020 • 101
    Influence of lattice misfit on the deformation behaviour of α2/γ lamellae in TiAl alloys
    Chauniyal, A. and Janisch, R.
    MATERIALS SCIENCE AND ENGINEERING A. Volume: 796 (2020)
    view abstract10.1016/j.msea.2020.140053

    Interfaces play a significant role in the deformation behaviour of lamellar two-phase TiAl alloys and contribute to their increased strength. We study the deformation behaviour of α2/γ bilayers with either coherent or semicoherent interfaces, using atomistic simulations. We identify the nucleation sites for dislocations and decouple the effects of the microstructural parameters volume fraction and layer thickness on the yield stress and strain. Uniaxial tensile tests are carried out on bi-layer specimens with α2 and γ phases along directions parallel and perpendicular to the interface. Coherent α2∕γ bi-layers show residual stresses due to lattice mismatch which are linearly related to the volume fractions of the phases. These residual stresses, superimposed with tensile stresses during loading, lead to early yielding of the γ phase. In contrast, a semi-coherent interface leads to negligible residual stresses, but contains misfit dislocations which create localized stresses within the γ layer and thus contributes to dislocation nucleation. We show that along loading directions parallel to the interface, the layer thickness does not affect the deformation behaviour, irrespective of the type of interface, instead volume fraction is the governing parameter. When loading perpendicular to the interface, the absolute layer thickness does not affect the deformation behaviour of a bi-layer with a coherent interface, but determines the yield stress and strain in case of a semi coherent interface. © 2020 Elsevier B.V.

  • 2020 • 100
    Electrochemical dealloying as a tool to tune the porosity, composition and catalytic activity of nanomaterials
    Rurainsky, C. and Manjón, A.G. and Hiege, F. and Chen, Y.-T. and Scheu, C. and Tschulik, K.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 8 (2020)
    view abstract10.1039/d0ta04880a

    Electrochemical dealloying as a post-Treatment can greatly improve the catalytic activity of nanoparticles. To date, selecting suitable conditions to reach desired porosity, composition and catalytic activity is based on trial-And-error-Attempts, due to insufficient understanding of the electrochemically induced morphological and compositional changes of the nanoparticles. These changes are elucidated here by combining electrochemistry with identical location electron microscopy analyses and linking them to the electrocatalytic properties of the obtained nanocatalysts. Using AgAu alloy nanoparticles and the hydrogen evolution reaction as a model system, the influence of cyclic voltammetry parameters on the catalytic activity upon electrochemical dealloying is investigated. Increasing the number of cycles initially results in a decreased Ag content and a sharp improvement in activity. Additional dealloying increases the nanoparticle porosity, while marginally altering their composition, due to surface motion of atoms. Since this is accompanied by particle aggregation, a decrease in catalytic activity results upon extensive cycling. This transition between porosity formation and particle aggregation marks the optimum for nanocatalyst post-production. The gained insights may aid speeding up the development of new materials by electrochemical dealloying as an easy-To-control post-processing route to tune the properties of existing nanoparticles, instead of having to alter usually delicate synthesis routes as a whole. © The Royal Society of Chemistry.

  • 2020 • 99
    Atomic scale configuration of planar defects in the Nb-rich C14 Laves phase NbFe2
    Šlapáková, M. and Zendegani, A. and Liebscher, C.H. and Hickel, T. and Neugebauer, J. and Hammerschmidt, T. and Ormeci, A. and Grin, J. and Dehm, G. and Kumar, K.S. and Stein, F.
    ACTA MATERIALIA. Volume: 183 (2020)
    view abstract10.1016/j.actamat.2019.11.004

    Laves phases belong to the group of tetrahedrally close-packed intermetallic phases, and their crystal structure can be described by discrete layer arrangements. They often possess extended homogeneity ranges and the general notion is that deviations from stoichiometry are accommodated by anti-site atoms or vacancies. The present work shows that excess Nb atoms in a Nb-rich NbFe2 C14 Laves phase can also be incorporated in various types of planar defects. Aberration-corrected scanning transmission electron microscopy and density functional theory calculations are employed to characterize the atomic configuration of these defects and to establish stability criteria for them. The planar defects can be categorized as extended or confined ones. The extended defects lie parallel to the basal plane of the surrounding C14 Laves phase and are fully coherent. They contain the characteristic Zr4Al3-type (O) units found in the neighboring Nb6Fe7 µ phase. An analysis of the chemical bonding reveals that the local reduction of the charge transfer is a possible reason for the preference of this atomic arrangement. However, the overall layer stacking deviates from that of the perfect µ phase. The ab initio calculations establish why these exceptionally layered defects can be more stable configurations than coherent nano-precipitates of the perfect µ phase. The confined defects are observed with pyramidal and basal habit planes. The pyramidal defect is only ~1 nm thick and resembles the perfect µ phase. In contrast, the confined basal defect can be regarded as only one single O unit and it appears as if the stacking sequence is disrupted. This configuration is confirmed by ab initio calculations to be metastable. © 2019

  • 2020 • 98
    Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys
    Kürnsteiner, P. and Bajaj, P. and Gupta, A. and Wilms, M.B. and Weisheit, A. and Li, X. and Leinenbach, C. and Gault, B. and Jägle, E.A. and Raabe, D.
    ADDITIVE MANUFACTURING. Volume: 32 (2020)
    view abstract10.1016/j.addma.2019.100910

    Laser Additive Manufacturing (LAM) of light metals such as high-strength Al-based alloys offers tremendous potential for e.g. weight reduction and associated reduced fuel consumptions for the transportation industry. Typically, commercial Sc-containing alloys, such as Scalmalloy®, rely on precipitation hardening to increase their strength. Conventional processing involves controlled ageing during which ordered and coherent Al3Sc precipitates form from a Sc-supersaturated solid solution. Here we show how the intrinsic heat treatment (IHT) of directed energy deposition (DED) can be used to trigger the precipitation of Al3Sc already during the LAM process. High number densities of 1023 nano-precipitates per m3 can be realized through solid-state phase transformation from the supersaturated Al-Sc matrix that results from the fast cooling rate in LAM. Yet, the IHT causes precipitates to coarsen, hence reducing their strengthening effect. We implement alternative solidification conditions to exploit the IHT to form a Zr-rich shell around the Al3Sc precipitates that prevents coarsening. Our approach is applicable to a wide range of precipitation-hardened alloys to trigger in-situ precipitation during LAM. © 2019 Elsevier B.V.

  • 2020 • 97
    A model for grain boundary thermodynamics
    Darvishi Kamachali, R.
    RSC ADVANCES. Volume: 10 (2020)
    view abstract10.1039/d0ra04682e

    Systematic microstructure design requires reliable thermodynamic descriptions of each and all microstructure elements. While such descriptions are well established for most bulk phases, thermodynamic assessment of microstructure defects is challenging because of their individualistic nature. In this paper, a model is devised for assessing grain boundary thermodynamics based on available bulk thermodynamic data. We propose a continuous relative atomic density field and its spatial gradients to describe the grain boundary region with reference to the homogeneous bulk and derive the grain boundary Gibbs free energy functional. The grain boundary segregation isotherm and phase diagram are computed for a regular binary solid solution, and qualitatively benchmarked for the Pt-Au system. The relationships between the grain boundary's atomic density, excess free volume, and misorientation angle are discussed. Combining the current density-based model with available bulk thermodynamic databases enables constructing databases, phase diagrams, and segregation isotherms for grain boundaries, opening possibilities for studying and designing heterogeneous microstructures. © The Royal Society of Chemistry.

  • 2020 • 96
    Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition
    Rao, Z. and Dutta, B. and Körmann, F. and Lu, W. and Zhou, X. and Liu, C. and da Silva, A.K. and Wiedwald, U. and Spasova, M. and Farle, M. and Ponge, D. and Gault, B. and Neugebauer, J. and Raabe, D. and Li, Z.
    ADVANCED FUNCTIONAL MATERIALS. Volume: (2020)
    view abstract10.1002/adfm.202007668

    Since its first emergence in 2004, the high-entropy alloy (HEA) concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, this strategy is changed and renders such massive solid solutions metastable, to trigger spinodal decomposition for improving the alloys’ magnetic properties. The motivation for starting from a HEA for this approach is to provide the chemical degrees of freedom required to tailor spinodal behavior using multiple components. The key idea is to form Fe-Co enriched regions which have an expanded volume (relative to unconstrained Fe-Co), due to coherency constraints imposed by the surrounding HEA matrix. As demonstrated by theory and experiments, this leads to improved magnetic properties of the decomposed alloy relative to the original solid solution matrix. In a prototype magnetic FeCoNiMnCu HEA, it is shown that the modulated structures, achieved by spinodal decomposition, lead to an increase of the Curie temperature by 48% and a simultaneous increase of magnetization by 70% at ambient temperature as compared to the homogenized single-phase reference alloy. The findings thus open a pathway for the development of advanced functional HEAs. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

  • 2020 • 95
    In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions
    Beheshti Askari, A. and Al Samarai, M. and Morana, B. and Tillmann, L. and Pfänder, N. and Wandzilak, A. and Watts, B. and Belkhou, R. and Muhler, M. and Muhler, M. and Debeer, S.
    ACS CATALYSIS. Volume: 10 (2020)
    view abstract10.1021/acscatal.9b05517

    Herein, we report the synthesis of a γ-Al2O3-supported NiCo catalyst for dry methane reforming (DMR) and study the catalyst using in situ scanning transmission X-ray microscopy (STXM) during the reduction (activation step) and under reaction conditions. During the reduction process, the NiCo alloy particles undergo elemental segregation with Co migrating toward the center of the catalyst particles and Ni migrating to the outer surfaces. Under DMR conditions, the segregated structure is maintained, thus hinting at the importance of this structure to optimal catalytic functions. Finally, the formation of Ni-rich branches on the surface of the particles is observed during DMR, suggesting that the loss of Ni from the outer shell may play a role in the reduced stability and hence catalyst deactivation. These findings provide insights into the morphological and electronic structural changes that occur in a NiCo-based catalyst during DMR. Further, this study emphasizes the need to study catalysts under operating conditions in order to elucidate material dynamics during the reaction. © 2020 American Chemical Society.

  • 2020 • 94
    In situ X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts
    Beheshti Askari, A. and Al Samarai, M. and Hiraoka, N. and Ishii, H. and Tillmann, L. and Muhler, M. and Debeer, S.
    NANOSCALE. Volume: 12 (2020)
    view abstract10.1039/d0nr01960g

    The promoting effect of cobalt on the catalytic activity of a NiCoO Dry Methane Reforming (DMR) catalyst was studied by a combination of in situ Kβ X-ray Emission Spectroscopy (XES) and Kβ-detected High Energy Resolution Fluorescence Detected X-ray absorption spectroscopy (HERFD XAS). Following the calcination process, Ni XES and Kβ-detected HERFD XAS data revealed that the NiO coordination in the NiCoO catalyst has a higher degree of symmetry and is different than that of pure NiO/γ-Al2O3. Following the reductive activation, it was found that the NiCoO/γ-Al2O3 catalyst required a relatively higher temperature compared to the monometallic NiO/γ-Al2O3 catalyst. This finding suggests that Co is hampering the reduction of Ni in the NiCoO catalyst by modulation of its electronic structure. It has also been previously shown that the addition of Co enhances the DMR activity. Further, the Kβ XES spectrum of the partly reduced catalysts at 450 °C reveals that the Ni sites in the NiCoO catalyst are electronically different from the NiO catalyst. The in situ X-ray spectroscopic study demonstrates that reduced metallic Co and Ni are the primary species present after reduction and are preserved under DMR conditions. However, the NiCo catalyst appears to always be somewhat more oxidized than the Ni-only species, suggesting that the presence of cobalt modulates the Ni electronic structure. The electronic structural modulations resulting from the presence of Co may be the key to the increased activity of the NiCo catalyst relative to the Ni-only catalyst. This study emphasizes the potential of in situ X-ray spectroscopy experiments for probing the electronic structure of catalytic materials during activation and under operating conditions. © The Royal Society of Chemistry.

  • 2020 • 93
    Influence of Ti3Ni4 precipitates on the indentation-induced two-way shape-memory effect in Nickel-Titanium
    Laursen, C.M. and Peter, N.J. and Gerstein, G. and Maier, H.J. and Dehm, G. and Frick, C.P.
    MATERIALS SCIENCE AND ENGINEERING A. Volume: 792 (2020)
    view abstract10.1016/j.msea.2020.139373

    Nickel Titanium (NiTi) alloys have been used for many years based on their unique ability to exhibit the shape-memory and pseudoelastic effects. The indentation-induced two-way shape memory effect (TWSME) is a specific sub-capability of this alloy such that a repeatably switchable surface can be created by “training” the material through mechanical indentation and activated through temperature transitions between the austenitic and martensitic phases. This study sought to observe the effect Ti3Ni4 precipitate aging would have on the indentation-induced TWSME. Ti3Ni4 has previously been shown as an effective method to alter NiTi transformation temperatures, yet it was unclear what effect localized stress fields around precipitates would have on the TWSME. The results presented here indicate that growth of precipitates in the alloy before training suppresses the resultant indentation-induced TWSME, and small precipitates, which cause minimal lattice mismatch to the matrix (i.e. highest coherency), have the strongest role in suppressing the effect. It is suggest that lattice coherency acts to inhibit plastic deformation, suppressing the creation of the preferred microstructure under the indent required to guide the TWSME. Therefore, precipitate aging is not a recommended alternative to precise alloying in order to alter transformation temperatures with the goal of maximizing the indentation-induced TWSME effect within a targeted temperate transformation regime. © 2020 Elsevier B.V.

  • 2020 • 92
    Thermodynamic modelling of the Ni–Zr system
    Jana, A. and Sridar, S. and Fries, S.G. and Hammerschmidt, T. and Kumar, K.C.H.
    INTERMETALLICS. Volume: 116 (2020)
    view abstract10.1016/j.intermet.2019.106640

    In this work, we report the thermodynamic modelling of the Ni–Zr system using the Calphad method combined with ab initio calculations. Density functional theory (DFT) is employed to calculate the enthalpy of formation of the intermediate phases. The calculated enthalpies of formation are in close agreement with the experimental data. An approach based on special quasirandom structures (SQS) was used for calculating the enthalpy of mixing of the fcc solid solution. The vibrational contribution to the heat capacities of NiZr, NiZr2, Ni3Zr and Ni7Zr2 phases were calculated using the quasiharmonic approximation (QHA) and the corresponding electronic contribution was obtained using an approach based on Mermin statistics. The total heat capacities for these phases were fitted to appropriate expressions and integrated to obtain the Gibbs energy functions valid down to 0 K. The calculated thermochemical properties along with critically selected experimental constitutional and thermochemical data served as input for the thermodynamic optimisation of the system. The calculated phase equilibria and the thermodynamic properties using the optimised Gibbs energy functions are in good agreement with the input data. The calculated congruent melting points of NiZr and NiZr2 phases are close to the recent experimental data. The Ni10Z7 phase forms by a peritectic reaction, which is also in agreement with the experimental data. © 2019 Elsevier Ltd

  • 2020 • 91
    Trends in elastic properties of Ti-Ta alloys from first-principles calculations
    Chakraborty, T. and Rogal, J.
    JOURNAL OF PHYSICS CONDENSED MATTER. Volume: 33 (2020)
    view abstract10.1088/1361-648X/abba67

    The martensitic start temperature (M s) is a technologically fundamental characteristic of high-temperature shape memory alloys. We have recently shown [Chakraborty et al 2016 Phys. Rev. B 94 224104] that the two key features in describing the composition dependence of M s are the T = 0 K phase stability and the difference in vibrational entropy which, within the Debye model, is directly linked to the elastic properties. Here, we use density functional theory together with special quasi-random structures to study the elastic properties of disordered martensite and austenite Ti-Ta alloys as a function of composition. We observe a softening in the tetragonal shear elastic constant of the austenite phase at low Ta content and a non-linear behavior in the shear elastic constant of the martensite. A minimum of 12.5% Ta is required to stabilize the austenite phase at T = 0 K. Further, the shear elastic constants and Young's modulus of martensite exhibit a maximum for Ta concentrations close to 30%. Phenomenological, elastic-constant-based criteria suggest that the addition of Ta enhances the strength, but reduces the ductile character of the alloys. In addition, the directional elastic stiffness, calculated for both martensite and austenite, becomes more isotropic with increasing Ta content. The reported trends in elastic properties as a function of composition may serve as a guide in the design of alloys with optimized properties in this interesting class of materials. © 2020 IOP Publishing Ltd.

  • 2020 • 90
    Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo2 Laves phase polytypes studied by nanoindentation
    Luo, W. and Kirchlechner, C. and Li, J. and Dehm, G. and Stein, F.
    JOURNAL OF MATERIALS RESEARCH. Volume: 35 (2020)
    view abstract10.1557/jmr.2019.384

    Regarding the effect of composition on the mechanical properties of intermetallic phases such as Laves phases, there is conflicting information in the literature. Some authors observed defect hardening when deviating from stoichiometric Laves phase composition, whereas others find defect softening. Here, we present a systematic investigation of the defect state, hardness, and elastic modulus of cubic and hexagonal NbCo2 Laves phases as a function of crystal structure and composition. For this purpose, diffusion couples were prepared which exhibit diffusion layers of the cubic C15 and hexagonal C14 and C36 NbCo2 Laves phases, with concentration gradients covering their entire homogeneity ranges from 24 to 37 at.% Nb. Direct observations of dislocations and stacking faults in the diffusion layers as a function of composition were performed by electron channeling contrast imaging, and the hardness and elastic modulus were probed in the diffusion layers along the concentration gradients by nanoindentation. © 2020 Materials Research Society.

  • 2020 • 89
    Deactivating deformation twinning in medium-entropy CrCoNi with small additions of aluminum and titanium
    Slone, C.E. and LaRosa, C.R. and Zenk, C.H. and George, E.P. and Ghazisaeidi, M. and Mills, M.J.
    SCRIPTA MATERIALIA. Volume: 178 (2020)
    view abstract10.1016/j.scriptamat.2019.11.053

    High strain-hardening rates in equiatomic CrCoNi and other multi-principal element alloys have been attributed to deformation twinning. This work shows that small additions of Al and Ti to a CrCoNi alloy deactivate deformation twinning with only minor changes to uniform elongation and ultimate tensile strength. The initial microstructure is free of chemically ordered (Al,Ti)-rich precipitates after solutionizing and quenching. Tensile properties for the alloy are reported and compared to equiatomic CrCoNi, and the post-deformation microstructure is assessed. Density functional theory calculations indicate that energetically unfavorable Al-Al bonds may discourage shearing via partial dislocations, which are necessary for twinning to occur. © 2019

  • 2020 • 88
    Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study
    Rao, Z. and Dutta, B. and Körmann, F. and Ponge, D. and Li, L. and He, J. and Stephenson, L. and Schäfer, L. and Skokov, K. and Gutfleisch, O. and Raabe, D. and Li, Z.
    PHYSICAL REVIEW MATERIALS. Volume: 4 (2020)
    view abstract10.1103/PhysRevMaterials.4.014402

    We combined experimental investigations and theoretical calculations to unveil an abnormal magnetic behavior caused by addition of the nonmagnetic element Cu in face-centered-cubic FeNiCoMn-based high-entropy alloys (HEAs). Upon Cu addition, the probed HEAs show an increase of both Curie temperature and saturation magnetization in as-cast and homogenized states. Specifically, the saturation magnetization of the as-cast HEAs at room temperature increases by 77% and 177% at a Cu content of 11 and 20 at. %, respectively, compared to the as-cast equiatomic FeNiCoMn HEA without Cu. The increase in saturation magnetization of the as-cast HEAs is associated with the formation of an Fe-Co rich phase in the dendritic regions. For the homogenized HEAs, the magnetic state at room temperature transforms from paramagnetism to ferromagnetism after 20 at. % Cu addition. The increase of the saturation magnetization and Curie temperature cannot be adequately explained by the formation of Cu enriched zones according to atom probe tomography analysis. Ab initio calculations suggest Cu plays a pivotal role in the stabilization of a ferromagnetic ordering of Fe, and reveal an increase of the Curie temperature caused by Cu addition which agrees well with the experimental results. The underlying mechanism behind this phenomenon lies in a combined change in unit-cell volume and chemical composition and the related energetic stabilization of the magnetic ordering upon Cu alloying as revealed by theoretical calculations. Thus, the work unveils the mechanisms responsible for the Cu effect on the magnetic properties of FeNiCoMn HEAs, and suggests that nonmagnetic elements are also crucial to tune and improve magnetic properties of HEAs. © 2020 American Physical Society.

  • 2020 • 87
    Surface modification of NiTi alloy by ultrashort pulsed laser shock peening
    Wang, H. and Kalchev, Y. and Wang, H. and Yan, K. and Gurevich, E.L. and Ostendorf, A.
    SURFACE AND COATINGS TECHNOLOGY. Volume: 394 (2020)
    view abstract10.1016/j.surfcoat.2020.125899

    This research paper presents the attempt at ultrashort pulsed laser shock peening with absence of absorptive layer and confining medium which could enhance surface microhardness and the abrasion property of NiTi shape memory alloy. The average roughness values of NiTi specimen were measured on the surface, because the roughness would affect the friction resistance. The microhardness and Young's modulus were investigated at different position of single laser spot by nanoindentation technique. The pin-on-plate sliding abrasion testing were performed with different load-force (0.5 N and 2 N) for different testing time. Results showed that ultrashort pulsed laser shock peening treatment would cause a significant improvement on friction coefficient and abrasion property, which was attributed to the change of surface modification, such as roughness, microhardness, microstructure and titanium oxide layer, but the ultrashort pulsed laser shock peening treatment did not enhance its tensile strength during present research. © 2020 Elsevier B.V.

  • 2020 • 86
    Anisotropic failure behavior of ordered intermetallic TiAl alloys under pure mode-I loading
    Neogi, A. and Alam, M. and Hartmaier, A. and Janisch, R.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING. Volume: 28 (2020)
    view abstract10.1088/1361-651X/aba738

    Whether a metallic material fractures by brittle cleavage or by ductile rupture is primarily governed by the competition between cleavage and dislocation emission at the crack tip. The linear elastic fracture mechanics (LEFM) based criterion of Griffith, respectively the one for dislocation emission of Rice, are sufficiently reliable for determining the possible crack tip propagation mechanisms in isotropic crystalline metals. However, the applicability of these criteria is questionable when non-cubic, anisotropic solids are considered, as e.g. ordered intermetallic TiAl phases, where slip systems are limited and elastic anisotropy is pronounced. We study brittle versus ductile failure mechanisms in face-centered tetragonal TiAl and hexagonal Ti3Al using large-scale atomistic simulations and compare our findings to the predictions of LEFM-based criteria augmented by elastic anisotropy. We observe that the augmented Griffith and Rice criteria are reliable for determining the direction dependent crack tip mechanisms, if all the available dislocation slip systems are taken into account. Yet, atomistic simulations are necessary to understand crack blunting due to mixed mechanisms, or shear instabilities other than dislocation emission. The results of our systematic study can be used as basis for modifications of the Griffith/Rice criteria in order to incorporate such effects. © 2020 The Author(s). Published by IOP Publishing Ltd.

  • 2019 • 85
    On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy
    Palanisamy, D. and Raabe, D. and Gault, B.
    ACTA MATERIALIA. Volume: 174 (2019)
    view abstract10.1016/j.actamat.2019.05.037

    We introduce a new perspective on the classical massive mode of solid-state phase transformation enabled by the correlative use of atomic-scale electron microscopy and atom probe tomography. This is demonstrated in a binary MnAl alloy which has Heusler-like characteristics. In this system, the τ phase formed by a massive transformation from the high-temperature ε phase is metastable and ferromagnetic. The transformation results in a high density of micro-twins inside the newly grown τ phase. Atomic-scale compositional analysis across the interface boundaries and atomic structure of the micro-twins reveals the involvement of both structural modification and also the compositional partitioning during the growth of the τ phase. This is assisted by the migrating τ/ε interface boundary during transformation. Finally, the role of micro-twins on nucleating the equilibrium phases and the influence of the defects and phase formation on the magnetic properties are discussed. © 2019 Acta Materialia Inc.

  • 2019 • 84
    Influence of composition and precipitation evolution on damage at grain boundaries in a crept polycrystalline Ni-based superalloy
    Kontis, P. and Kostka, A. and Raabe, D. and Gault, B.
    ACTA MATERIALIA. Volume: 166 (2019)
    view abstract10.1016/j.actamat.2018.12.039

    The microstructural and compositional evolution of intergranular carbides and borides prior to and after creep deformation at 850 °C in a polycrystalline nickel-based superalloy was studied. Primary MC carbides, enveloped within intergranular γ′ layers, decomposed resulting in the formation of layers of the undesirable η phase. These layers have a composition corresponding to Ni3Ta as measured by atom probe tomography and their structure is consistent with the D024 hexagonal structure as revealed by transmission electron microscopy. Electron backscattered diffraction reveals that they assume various misorientations with regard to the adjacent grains. As a consequence, these layers act as brittle recrystallized zones and crack initiation sites. The composition of the MC carbides after creep was altered substantially, with the Ta content decreasing and the Hf and Zr contents increasing, suggesting a beneficial effect of Hf and Zr additions on the stability of MC carbides. By contrast, M5B3 borides were found to be microstructurally stable after creep and without substantial compositional changes. Borides at 850 °C were found to coarsen, resulting in some cases into γ′- depleted zones, where, however, no cracks were observed. The major consequences of secondary phases on the microstructural stability of superalloys during the design of new polycrystalline superalloys are discussed. © 2018 Acta Materialia Inc.

  • 2019 • 83
    Enhanced propylene oxide selectivity for gas phase direct propylene epoxidation by lattice expansion of silver atoms on nickel nanoparticles
    Yu, B. and Ayvalı, T. and Raine, E. and Li, T. and Li, M.M.-J. and Zheng, J. and Wu, S. and Bagabas, A.A. and Tsang, S.C.E.
    APPLIED CATALYSIS B: ENVIRONMENTAL. Volume: 243 (2019)
    view abstract10.1016/j.apcatb.2018.10.061

    A series of surfactant-free nickel-core and silver-shell (Ni@Ag) nanoparticles encapsulated within the mesopores of SBA-15 were synthesized and tested as catalysts for direct propylene oxidation by molecular oxygen. The influences of temperature, Gas Hour Space Velocity (GHSV) and Ni/Ag ratio on catalytic activity were systematically investigated. Among the prepared samples, Ni1Ag0.4/SBA-15 exhibited the best catalytic performance with selectivity of 70.7% and PO production rate of 4.4 nmol/g/s under 1 bar at 220 °C with GHSV of 192 h−1. High selectivity was attributed to longer Ag-Ag interatomic distance obtained by careful engineering the thickness of Ag shell over preformed Ni nanoparticles. In addition, all prepared new Ni@Ag core-shell catalysts presented excellent stability, which could maintain the conversion and selectivity for at least 10 h. These results suggest that new designs based on Ag surface atoms tailoring might pave the way to highly efficient and robust Ag catalysts for direct propylene oxidation using molecular oxygen as sole oxidant. © 2018 Elsevier B.V.

  • 2019 • 82
    New flat-punch indentation creep testing approach for characterizing the local creep properties at high temperatures
    Matschkal-Amberger, D. and Kolb, M. and Neumeier, S. and Gao, S. and Hartmaier, A. and Durst, K. and Göken, M.
    MATERIALS AND DESIGN. Volume: 183 (2019)
    view abstract10.1016/j.matdes.2019.108090

    An indentation creep testing approach has been developed which allows measuring creep properties at high temperatures. In contrast to existing indentation or impression creep experiments, the approach described here allows to achieve a quite high spatial resolution, as flat punch indenters with a diameter of only 20 μm are used. First indentation creep tests have been performed on single crystalline nickel and nickel binary solid solution alloys with Re, Ta or W as alloying elements, respectively. The indentation creep tests have been carried out at a temperature of 650 °C and stress levels in the range of 85 to 400 MPa. Using crystal plasticity finite element modeling, the indentation creep response is converted into equivalent uniaxial creep properties. It is shown that the conversion parameters, evaluated for differently oriented single crystals, can be chosen independently of the creep rate exponent in the power law creep regime. It is found that the indentation creep results agree well with conventional uniaxial creep tests. Furthermore, the results show that Ta is the most effective solid solution strengthener of all tested solid-solution strengtheners at 650 °C because of the large atomic size mismatch, followed by W and Re. © 2019 The Authors

  • 2019 • 81
    Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy
    Thurston, K.V.S. and Gludovatz, B. and Yu, Q. and Laplanche, G. and George, E.P. and Ritchie, R.O.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 794 (2019)
    view abstract10.1016/j.jallcom.2019.04.234

    Multiple-principal element alloys known as high-entropy alloys have rapidly been gaining attention for the vast variety of compositions and potential combinations of properties that remain to be explored. Of these alloys, one of the earliest, the ‘Cantor alloy’ CrMnFeCoNi, displays excellent damage-tolerance with tensile strengths of ∼1 GPa and fracture toughness values in excess of 200 MPa√m; moreover, these mechanical properties tend to further improve at cryogenic temperatures. However, few studies have explored its corresponding fatigue properties. Here we expand on our previous study to examine the mechanics and mechanisms of fatigue-crack propagation in the CrMnFeCoNi alloy (∼7 μm grain size), with emphasis on long-life, near-threshold fatigue behavior, specifically as a function of load ratio at temperatures between ambient and liquid-nitrogen temperatures (293 K–77 K). We find that ΔKth fatigue thresholds are decreased with increasing positive load ratios, R between 0.1 and 0.7, but are increased at decreasing temperature. These effects can be attributed to the role of roughness-induced crack closure, which was estimated using compliance measurements. Evidence of deformation twinning at the crack tip during fatigue-crack advance was not apparent at ambient temperatures but seen at higher stress intensities (ΔK ∼ 20 MPa√m) at 77 K by post mortem microstructural analysis for tests at R = 0.1 and particularly at 0.7. Overall, the fatigue behavior of this alloy was found to be superior, or at least comparable, to conventional cryogenic and TWIP steels such as 304 L or 316 L steels and Fe-Mn steels; these results coupled with the remarkable strength and fracture toughness of the Cantor alloy at low temperatures indicate significant promise for the utility of this material for applications at cryogenic environments. © 2019

  • 2019 • 80
    Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coat layers
    Go, T. and Sohn, Y.J. and Mauer, G. and Vaßen, R. and Gonzalez-Julian, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. Volume: 39 (2019)
    view abstract10.1016/j.jeurceramsoc.2018.11.035

    Highly pure Cr2AlC powders were synthesized and deposited for the first time by cold spray technology on stainless steel substrates. The Cr2AlC coatings were relative dense, up to 91%, and present high purity (> 98%) since only small traces of Cr2Al, Al2O3 and Cr2O3 were detected by XRD, SEM and EDX. The microstructure of the coatings is homogeneous, although some preferential orientation in the basal plane was observed by XRD pole figures. The adhesion between the coating and the substrate is strong, and compressive residual stresses up to 300 MPa in the coating were determined by XRD. Furthermore, a conventional YSZ Thermal Barrier Coating (TBCs) was deposited by Atmospheric Plasma Spray (APS) on top of the cold sprayed Cr2AlC coating in order to demonstrate the processing feasibility of Cr2AlC MAX phases as a bond-coat layer. © 2018 Elsevier Ltd

  • 2019 • 79
    Fe/Co/Ni mixed oxide nanoparticles supported on oxidized multi-walled carbon nanotubes as electrocatalysts for the oxygen reduction and the oxygen evolution reactions in alkaline media
    Kazakova, M.A. and Morales, D.M. and Andronescu, C. and Elumeeva, K. and Selyutin, A.G. and Ishchenko, A.V. and Golubtsov, G.V. and Dieckhöfer, S. and Schuhmann, W. and Masa, J.
    CATALYSIS TODAY. Volume: (2019)
    view abstract10.1016/j.cattod.2019.02.047

    Fabrication of efficient and cost-effective bifunctional oxygen electrocatalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) remains a challenge for the development of rechargeable metal-air batteries and unitized regenerative fuel cells technologies. Herein, we report high-performance bifunctional ORR/OER electrocatalysts consisting of mixed transition metal (Fe, Co, Ni) oxide nanoparticles supported on oxidized multi-walled carbon nanotubes (MWCNT). Investigation of the ORR and OER activity of samples with different metal compositions showed that trimetallic/MWCNT composites having Fe:Ni:Co = x:x:(1-2x) ratios, with 0.25 ≤ x ≤ 0.4, exhibit highest bifunctional activity in terms of the reversible ORR/OER overvoltage at a given current density. Moreover, the trimetallic catalysts exhibited improved selectivity with respect to the reduction of O 2 to OH − compared to the bimetallic Fe-Ni, Fe-Co and Co-Ni catalysts, thus revealing synergistic interactions among the metal oxide components. Correlation of the electrocatalytic activity with the structure of the composites is discussed for the most representative cases. © 2019 Elsevier B.V.

  • 2019 • 78
    Oxygen-mediated deformation and grain refinement in Cu-Fe nanocrystalline alloys
    Guo, J. and Duarte, M.J. and Zhang, Y. and Bachmaier, A. and Gammer, C. and Dehm, G. and Pippan, R. and Zhang, Z.
    ACTA MATERIALIA. Volume: 166 (2019)
    view abstract10.1016/j.actamat.2018.12.040

    Light elements play a crucial role on the microstructure and properties of conventional alloys and steels. Oxygen is one of the light elements which is inevitably introduced into nanocrystalline alloys during manufacturing. Here, we report that severe plastic deformation can fragment the oxides formed in powder processing and eventually cause oxygen dissolution in the matrix. A comparative investigation on Cu-Fe nanocrystalline alloys generated from different initial materials, blended powders and arc-melted bulk materials which have different oxygen contents, reveals that fragmented oxides at grain boundaries effectively decrease the grain boundary mobility, markedly facilitating grain refinement. In contrast, those oxygen atoms dissolved as interstitials in the Cu-Fe matrix lead to lattice expansion and significant decrease of stacking fault energy locally as validated by density functional theory. Such oxygen-mediated microstructure gives rise to enhanced strength and superior structural stability. The remarkable tailoring effect of oxygen can be employed to engineer nanocrystalline materials with desired properties for different applications. © 2018 Acta Materialia Inc.

  • 2019 • 77
    Ab initio phase stabilities of Ce-based hard magnetic materials and comparison with experimental phase diagrams
    Sözen, H.Ä. and Ener, S. and MacCari, F. and Skokov, K.P. and Gutfleisch, O. and Körmann, F. and Neugebauer, J. and Hickel, T.
    PHYSICAL REVIEW MATERIALS. Volume: 3 (2019)
    view abstract10.1103/PhysRevMaterials.3.084407

    Recent developments in electrical transportation and renewable energies have significantly increased the demand of hard magnetic materials with a reduced critical rare-earth content, but with properties comparable to (Nd,Dy)-Fe-B permanent magnets. Though promising alternative compositions have been identified in high-throughput screenings, the thermodynamic stability of these phases against decomposition into structures with much less favorable magnetic properties is often unclear. In the case of Ce-Fe-Ti alloys, we have used finite temperature ab initio methods to provide this missing information. Employing state-of-the-art approaches for vibrational, electronic, and magnetic entropy contributions, the Helmholtz free energy, F(T,V), is calculated for the desired hard magnetic CeFe11Ti phase and all relevant competing phases. The latter have been confirmed experimentally by employing reactive crucible melting (RCM) and energy-dispersive x-ray spectroscopy (EDS). Our ab initio based free energy calculations reveal that the presence of the CeFe2 Laves phase suppresses the formation of CeFe11Ti up to 700 K. The result is in agreement with RCM, in which CeFe11Ti is only observed above 1000 K, while the CeFe2 and Ce2Fe17 phases are stable at lower temperatures. © 2019 American Physical Society.

  • 2019 • 76
    On the role of nitrogen on hydrogen environment embrittlement of high-interstitial austenitic CrMnC(N) steels
    Egels, G. and Fussik, R. and Weber, S. and Theisen, W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. Volume: 44 (2019)
    view abstract10.1016/j.ijhydene.2019.10.109

    This work investigates the susceptibility of high-interstitial CrMn austenitic stainless steel CN0.96 to hydrogen environment embrittlement. In this context, an N-free model alloy of CN0.96 steel was designed, produced, and characterized. Both steels were subjected to tensile tests in air and in a high-pressure hydrogen gas atmosphere. Both steels undergo severe hydrogen embrittlement. The CN0.96 steel shows trans- and intergranular failure in hydrogen, whereas the N-free model alloy shows exclusively intergranular failure. The different failure modes could be related to different deformation modes that are induced by the presence or absence of N, respectively. In the CN0.96 steel, N promotes planar dislocation slip. Due to the absence of N in the model alloy, localized slip is less pronounced and mechanical twinning is a more preferred deformation mechanism. The embrittlement of the model alloy could therefore be related to mechanisms that are known from hydrogen embrittlement of twinning-induced plasticity steels. © 2019 Hydrogen Energy Publications LLC

  • 2019 • 75
    Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy
    MacDonald, B.E. and Fu, Z. and Wang, X. and Li, Z. and Chen, W. and Zhou, Y. and Raabe, D. and Schoenung, J. and Hahn, H. and Lavernia, E.J.
    ACTA MATERIALIA. Volume: 181 (2019)
    view abstract10.1016/j.actamat.2019.09.030

    Phase decomposition is commonly observed experimentally in single-phase high entropy alloys (HEAs). Hence, it is essential for the consideration of HEAs for structural applications to study and understand the nature of phase decomposition in HEAs, particularly the influence it has on mechanical behavior. This paper describes the phase decomposition in the equiatomic CoCuFeMnNi HEA and how the reported secondary phases influence mechanical behavior. Thermomechanical processing, followed by systematic post deformation annealing treatments, revealed the formation of two distinct secondary phases within the equiatomic face-centered cubic (FCC) matrix phase. Low temperature annealing treatments at 600 °C and below led to the nucleation of Fe-Co rich ordered B2 precipitates that contributed precipitation hardening while sufficiently small in size, on the order of 140 nm in diameter. At temperatures <800 °C Cu segregation, due to its immiscibility with the other constituents, eventually forms a Cu-rich disordered FCC phase that is determined to increase the yield strength of the alloy while reducing the ductility, likely attributable to the presence of additional interfaces. The thermal stability and chemistry of these phases are compared to those predicted on the basis of calculated phase diagram (CALPHAD) analyses. © 2019 Acta Materialia Inc.

  • 2019 • 74
    On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts
    Nebel, J. and Schmidt, S. and Pan, Q. and Lotz, K. and Kaluza, S. and Muhler, M.
    CHINESE JOURNAL OF CATALYSIS. Volume: 40 (2019)
    view abstract10.1016/S1872-2067(19)63344-9

    Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity. © 2019 Dalian Institute of Chemical Physics, the Chinese Academy of Sciences

  • 2019 • 73
    Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides
    Masa, J. and Andronescu, C. and Antoni, H. and Sinev, I. and Seisel, S. and Elumeeva, K. and Barwe, S. and Marti-Sanchez, S. and Arbiol, J. and Roldan Cuenya, B. and Muhler, M. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 6 (2019)
    view abstract10.1002/celc.201800669

    The modification of nickel with boron or phosphorus leads to significant enhancement of its electrocatalytic activity for the oxygen evolution reaction (OER). However, the precise role of the guest elements, B and P, in enhancing the OER of the host element (Ni) remains unclear. Herein, we present insight into the role of B and P in enhancing electrocatalysis of oxygen evolution by nickel borides and nickel phosphides. The apparent activation energy, Ea*, of electrocatalytic oxygen evolution on Ni2P was 78.4 kJ/mol, on Ni2B 65.4 kJ/mol, and on Ni nanoparticles 94.0 kJ/mol, thus revealing that both B and P affect the intrinsic activity of nickel. XPS data revealed shifts of −0.30 and 0.40 eV in the binding energy of the Ni 2p3/2 peak of Ni2B and Ni2P, respectively, with respect to that of pure Ni at 852.60 eV, thus indicating that B and P induce opposite electronic effects on the surface electronic structure of Ni. The origin of enhanced activity for oxygen evolution cannot, therefore, be attributed to such electronic modification or ligand effect. Severe changes induced on the nickel lattice, specifically, the Ni-Ni atomic order and interatomic distances (strain effect), by the presence of the guest atoms seem to be the dominant factors responsible for enhanced activity of oxygen evolution in nickel borides and nickel phosphides. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 72
    A neutron diffraction demonstration of long-range magnetic order in the quasicrystal approximant DyCd6
    Ryan, D.H. and Cadogan, J.M. and Kong, T. and Canfield, P.C. and Goldman, A.I. and Kreyssig, A.
    AIP ADVANCES. Volume: 9 (2019)
    view abstract10.1063/1.5079991

    We have used neutron powder diffraction to demonstrate the existence of long-range antiferromagnetic order of Ising-like Dy moments in the DyCd6 quasicrystal approximant phase. This cubic compound undergoes a slight distortion to a monoclinic cell at low temperatures. The Néel temperature is 18.0(2) K and the magnetic order of the Dy sublattice may be described in the parent cubic Im3 structure using a combination of two propagation vectors, k1 = [0 0 0] and k2 = [12 0 12], yielding 'anti-I' order. Alternatively, when referred to the monoclinic C2/c cell, the magnetic structure may be described by a single propagation vector: k = [1 0 0]. © 2019 Author(s).

  • 2019 • 71
    Comparative study of different anisotropy and potential formulations of phase-field models for dendritic solidification
    Kundin, J. and Steinbach, I.
    COMPUTATIONAL MATERIALS SCIENCE. Volume: 170 (2019)
    view abstract10.1016/j.commatsci.2019.109197

    Phase-field model formulations with double well and double obstacle potentials, and different anisotropy models are investigated with respect to their potential to simulate (i) tip growth on a quantitative level, (ii) well resolved side-branching. The dilute binary alloy Al-4 at%Cu is used as a model alloy. The effects of the numerical resolution (the ratio of the capillary length to the grid spacing) on the growth velocity are studied by means of convergence tests for isothermal and directional solidification in comparison to the theoretical values calculated by the Green-function method (A. Karma, W.J. Rappel, Phys. Rev. E 57 (1998) 4323). An interface stability parameter is introduced as a measure for the estimation of the maximum value of the grid spacing for effective simulations. We show that predominantly the side-branching occurs at numerical resolution lower than the limit value needed to produce correct results in accordance to the convergence analysis. The best results for dendrite growth at a relevant numerical resolution are obtained for the double well potential. © 2019 Elsevier B.V.

  • 2019 • 70
    First-principles characterization of reversible martensitic transformations
    Ferrari, A. and Sangiovanni, D.G. and Rogal, J. and Drautz, R.
    PHYSICAL REVIEW B. Volume: 99 (2019)
    view abstract10.1103/PhysRevB.99.094107

    Reversible martensitic transformations (MTs) are the origin of many fascinating phenomena, including the famous shape memory effect. In this work, we present a fully ab initio procedure to characterize MTs in alloys and to assess their reversibility. Specifically, we employ ab initio molecular dynamics data to parametrize a Landau expansion for the free energy of the MT. This analytical expansion makes it possible to determine the stability of the high- and low-temperature phases, to obtain the Ehrenfest order of the MT, and to quantify its free energy barrier and latent heat. We apply our model to the high-temperature shape memory alloy Ti-Ta, for which we observe remarkably small values for the metastability region (the interval of temperatures in which the high- and low-temperature phases are metastable) and for the barrier: these small values are necessary conditions for the reversibility of MTs and distinguish shape memory alloys from other materials. © 2019 American Physical Society.

  • 2019 • 69
    Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy
    Wang, H. and Pöhl, F. and Yan, K. and Decker, P. and Gurevich, E.L. and Ostendorf, A.
    APPLIED SURFACE SCIENCE. Volume: 471 (2019)
    view abstract10.1016/j.apsusc.2018.12.087

    NiTi shape memory alloy was processed by femtosecond laser shock peening (FLSP) without protective coating in distilled water to modify its surface characterizations. The surface topography, microhardness, microstructure and scratch testing were studied before and after FLSP treatment. The experimental results show that FLSP with different laser scanning speeds and passes can change the surface roughness and microhardness due to laser ablation and high pressure of shock wave. The average microhardness value of the specimens FLSPed in distilled water increased. Grain refinement was observed in the surface layer of FLSPed NiTi alloy. The scratch testing revealed that FLSP process can decrease the frictional force and coefficient of friction, and it also demonstrated that the FLSP technique is beneficial to enhance the surface wear property of NiTi alloy. © 2018 Elsevier B.V.

  • 2019 • 68
    Strength of hydrogen-free and hydrogen-doped Ni50Ti50 shape memory platelets
    Weiser, A. and Buršíková, V. and Jarý, M. and Dymáček, P. and Dugáček, J. and Frenzel, J. and Čermák, J. and Dlouhý, A.
    SCRIPTA MATERIALIA. Volume: 162 (2019)
    view abstract10.1016/j.scriptamat.2018.10.044

    Small-punch and nano-indentation tests were used for the first time to probe strength of 500 μm thin Ni50Ti50 shape memory platelets in their hydrogen-free and hydrogen-doped states. Results show excellent reproducibility and suggest that hydrogen penetrates the alloy more efficiently during the cathodic charging at ambient temperatures as compared to heat treatments in a controlled hydrogen atmosphere. Hydrogen content exceeding 100 wtppm results in a retransformation from the B19′ martensite to the R lattice and causes a systematic drop of the rupture strength. The retransformation events in thin surface lamellae were documented by the transmission electron microscopy. © 2018 Elsevier Ltd

  • 2019 • 67
    Bimetallic silver-platinum nanoparticles with combined osteo-promotive and antimicrobial activity
    Breisch, M. and Grasmik, V. and Loza, K. and Pappert, K. and Rostek, A. and Ziegler, N. and Ludwig, Al. and Heggen, M. and Epple, M. and Tiller, J.C. and Schildhauer, T.A. and Köller, M. and Sengstock, C.
    NANOTECHNOLOGY. Volume: 30 (2019)
    view abstract10.1088/1361-6528/ab172b

    Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP. © 2019 IOP Publishing Ltd.

  • 2019 • 66
    Strength of hydrogen-free and hydrogen-doped Ni 50 Ti 50 shape memory platelets
    Weiser, A. and Buršíková, V. and Jarý, M. and Dymáček, P. and Dugáček, J. and Frenzel, J. and Čermák, J. and Dlouhý, A.
    SCRIPTA MATERIALIA. Volume: 162 (2019)
    view abstract10.1016/j.scriptamat.2018.10.044

    Small-punch and nano-indentation tests were used for the first time to probe strength of 500 μm thin Ni 50 Ti 50 shape memory platelets in their hydrogen-free and hydrogen-doped states. Results show excellent reproducibility and suggest that hydrogen penetrates the alloy more efficiently during the cathodic charging at ambient temperatures as compared to heat treatments in a controlled hydrogen atmosphere. Hydrogen content exceeding 100 wtppm results in a retransformation from the B19′ martensite to the R lattice and causes a systematic drop of the rupture strength. The retransformation events in thin surface lamellae were documented by the transmission electron microscopy. © 2018 Elsevier Ltd

  • 2019 • 65
    Altering the stability of nanoislands through core-shell supports
    Sprodowski, C. and Morgenstern, K.
    NANOSCALE. Volume: 11 (2019)
    view abstract10.1039/c9nr00529c

    We follow the decay of two-dimensional Ag nanoclusters, called islands, on Cu-Ag core-shell supports by variable low temperature scanning tunneling microscopy in the temperature range between 160 and 260 K. We reveal two qualitatively different types of decay mechanisms, either linear in time, indicative of an interface-limited decay, or non-linear in time, indicative of diffusion-limited decay. In contrast to conventional decay on monometallic supports, the decay exponent of the diffusion-limited decay depends on temperature; it varies by one order of magnitude. Moreover, the decay rate decreases with increasing temperature. This unusual behaviour is traced back to the temperature-dependent shell of the core-shell support. © 2019 The Royal Society of Chemistry.

  • 2019 • 64
    Thermodynamics of grain boundary segregation, interfacial spinodal and their relevance for nucleation during solid-solid phase transitions
    Kwiatkowski da Silva, A. and Kamachali, R.D. and Ponge, D. and Gault, B. and Neugebauer, J. and Raabe, D.
    ACTA MATERIALIA. Volume: 168 (2019)
    view abstract10.1016/j.actamat.2019.02.005

    Grain boundary segregation, embrittlement and phase nucleation are interconnected phenomena that are often treated separately, which is partly due to limitations of the current models to predict grain boundary segregation in non-ideal solid solutions. Here, a simple model is introduced to predict grain boundary segregation in solid solutions by coupling available bulk thermodynamic data with a mean-field description of the grain boundary character. The model is confronted with experimental results obtained in Fe-Mn alloys analysed by atom probe tomography. This model successfully predicts a first order transition or a discontinuous jump in the composition of the grain boundary which kinetically implies the formation of spinodal Mn fluctuations that tend to grow further with time within the segregated region. The increase in solute concentration at the grain boundary leads to an increase of the enthalpy of the boundary and to its embrittlement at lower temperatures. Once austenite is formed, the amount of segregated solute Mn on the grain boundaries is drastically reduced and the toughness of the grain boundary is increased. © 2019 Acta Materialia Inc.

  • 2019 • 63
    On the influence of the heat treatment on microstructure formation and mechanical properties of near-α Ti-Fe alloys
    Sandlöbes, S. and Korte-Kerzel, S. and Raabe, D.
    MATERIALS SCIENCE AND ENGINEERING A. Volume: 748 (2019)
    view abstract10.1016/j.msea.2018.12.071

    We study the microstructure formation and mechanical properties of Ti-1Fe (wt%) and Ti-3Fe (wt%) alloys for different heat treatments in the β-phase and α + β-phase regions. By applying different heat treatment routes, we observe different microstructure formation mechanisms causing a wide range of mechanical properties from high strength (1.3 GPa) and low ductility (2%) to intermediate strength (700 MPa) and high ductility (30%) in these simple binary alloys. We performed microstructure characterizsation using scanning electron microscopy, transmission electron microscopy and atom probe tomography to show that the alloying content and heat treatment significantly affect the local martensitic and / or diffusional phase transformations causing the substantial changes in the mechanical behavior. © 2018

  • 2019 • 62
    Synthesis, microstructure, and hardness of rapidly solidified Cu-Cr alloys
    Garzón-Manjón, A. and Christiansen, L. and Kirchlechner, I. and Breitbach, B. and Liebscher, C.H. and Springer, H. and Dehm, G.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 794 (2019)
    view abstract10.1016/j.jallcom.2019.04.209

    Cu-Cr alloys with ∼32 at.% Cr were rapidly solidified by splat quenching or laser melting techniques with the intention to form a very fine grained, non-equilibrium nanostructure similar to those obtained by severe plastic deformation or thin film deposition. The rapidly solidified Cu-Cr alloys were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Both synthesis techniques lead to a similar two-phase microstructure with a nearly pure fcc Cu matrix with μm grain sizes and bcc Cr particles highly supersaturated with Cu. Splat quenching provides finer bcc particles with dimensions of less than 50 nm compared to laser melting with particle sizes of 100–2000 nm. In case of laser melting, (14 ± 2) at.% Cu are contained in the bcc phase, while splat quenching freezes (20 ± 2) at.% Cu in the bcc particles. The microstructures are discussed and compared to the non-equilibrium microstructures reported in literature using severe plastic deformation and thin films deposition. © 2019 Elsevier B.V.

  • 2019 • 61
    Thermodynamic assessment of the Co-Ta system
    Wang, P. and Koßmann, J. and Kattner, U.R. and Palumbo, M. and Hammerschmidt, T. and Olson, G.B.
    CALPHAD: COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY. Volume: 64 (2019)
    view abstract10.1016/j.calphad.2018.12.002

    The Co-Ta system has been reviewed and the thermodynamic description was re-assessed in the present work. DFT (density functional theory) calculations considering spin polarization were performed to obtain the energies for all end-member configurations of the C14, C15, C36 and μ phases for the evaluation of the Gibbs energies of these phases. The phase diagram calculated with the present description agrees well with the experimental and theoretical data. Considering the DFT results was essential for giving a better description of the μ phase at lower temperatures. © 2018 Elsevier Ltd

  • 2019 • 60
    Discovery of ω -free high-temperature Ti-Ta- X shape memory alloys from first-principles calculations
    Ferrari, A. and Paulsen, A. and Langenkämper, D. and Piorunek, D. and Somsen, C. and Frenzel, J. and Rogal, J. and Eggeler, G. and Drautz, R.
    PHYSICAL REVIEW MATERIALS. Volume: 3 (2019)
    view abstract10.1103/PhysRevMaterials.3.103605

    The rapid degradation of the functional properties of many Ti-based alloys is due to the precipitation of the ω phase. In the conventional high-temperature shape memory alloy Ti-Ta, the formation of this phase compromises completely the shape memory effect, and high (>100°C) transformation temperatures cannot be maintained during cycling. A solution to this problem is the addition of other elements to form Ti-Ta-X alloys, which often modifies the transformation temperatures; due to the largely unexplored space of possible compositions, very few elements are known to stabilize the shape memory effect without decreasing the transformation temperatures below 100°C. In this study, we use transparent descriptors derived from first-principles calculations to search for new ternary Ti-Ta-X alloys that combine stability and high temperatures. We suggest four alloys with these properties, namely Ti-Ta-Sb, Ti-Ta-Bi, Ti-Ta-In, and Ti-Ta-Sc. Our predictions for the most promising of these alloys, Ti-Ta-Sc, are subsequently fully validated by experimental investigations, the alloy Ti-Ta-Sc showing no traces of ω phase after cycling. Our computational strategy is transferable to other materials and may contribute to suppress ω phase formation in a large class of alloys. ©2019 American Physical Society.

  • 2019 • 59
    On the evolution of dislocation cell structures in two Al-alloys (Al-5Mg and Al-11Zn) during reciprocal sliding wear at high homologous temperatures
    Parsa, A.B. and Walter, M. and Theisen, W. and Bürger, D. and Eggeler, G.
    WEAR. Volume: (2019)
    view abstract10.1016/j.wear.2018.10.018

    The formation of dislocation substructures in up to 10 µm deep subsurface regions of two aluminium alloys, Al-5Mg and Al-11Zn, was investigated under conditions of high homologous temperature reciprocal sliding wear (HT-RSW). Under creep conditions, Al-5Mg shows a solid solution type of inverse primary creep. In contrast, Al-11Zn creeps obstacle controlled and exhibits normal primary creep. These two materials were subjected to reciprocal sliding wear at 200 and 300 °C for 100 and 1000 cycles. Flat polished disks were exposed to the 1 mm reciprocal movements of a spherical aluminium oxide counterbody under normal forces of 5 and 10 N at an oscillation frequency of 1 Hz. Using focused ion beam (FIB) micromachining thin electron transparent foils were prepared from the surface regions of the as received and worn material states. Transmission electron microscopy (TEM) was used to study the evolution of nano and micro grain sizes in the surface regions. Despite the different creep behavior, the two materials behave similar under conditions of reciprocal sliding wear. The results obtained in the present work show that subgrain sizes decrease with increasing numbers of wear cycles and increasing normal forces. Subgrain sizes also increase with increasing temperature. At 300 °C, dynamic recrystallization was observed in both Al-alloys. The results of the present work are discussed in the light of previous results reported in the literature. Areas in need of further work are highlighted. © 2018 Elsevier B.V.

  • 2019 • 58
    On the effects of microstructure on the mechanical properties of open-pore Al–11Zn foams
    Matz, A.M. and Matz, B.S. and Parsa, A.B. and Jost, N. and Eggeler, G.
    MATERIALS SCIENCE AND ENGINEERING A. Volume: 759 (2019)
    view abstract10.1016/j.msea.2019.05.087

    The mechanical properties of investment casted open-pore metal foams have been investigated on the example of the binary alloy Al–11Zn. The samples were subjected to different cooling conditions subsequent to casting and to different homogenization and ageing treatments. Variation in cooling was done either by quenching the mold in water or slowly cooling it in air. Homogenization and ageing varied in terms of temperature and time. The effects of the different treatments were investigated through microstructural and mechanical characterization methods. Using TEM, we found that the presence of GP zones and their morphological arrangement are the main factors dominating the mechanical performance. Micro- and nanoindentation testing of single foam struts reveal maximum hardness H when room temperature ageing was applied. Ageing at a temperature of 150 °C results in the lowest H in the present study; that is approximately 2/3 of the hardness achieved when ageing at room temperature. This can also be confirmed by the strength of non-porous bulk material obtained by tensile tests, which further show an increase in ductility up to a factor of 5 due to ageing at elevated temperatures. By compression testing of open-pore Al–11Zn foams, we notice that the presence of the microstructural effects varies in extent as a function of the strain ε. At low strains, we observe differences in mechanical performance to a high extent, becoming less with increasing compaction of the samples until they behave as non-porous bulk material. Based on these findings, we deduce a strong interaction of the structural morphology of the foam and its microstructure that determines the mechanical properties dominated by strength and ductility of the base material. © 2019 Elsevier B.V.

  • 2019 • 57
    Iron Aluminides
    Palm, M. and Stein, F. and Dehm, G.
    ANNUAL REVIEW OF MATERIALS RESEARCH. Volume: 49 (2019)
    view abstract10.1146/annurev-matsci-070218-125911

    The iron aluminides discussed here are Fe-Al-based alloys, in which the matrix consists of the disordered bcc (Fe,Al) solid solution (A2) or the ordered intermetallic phases FeAl (B2) and Fe3Al (D03). These alloys possess outstanding corrosion resistance and high wear resistance and are lightweight materials relative to steels and nickel-based superalloys. These materials are evoking new interest for industrial applications because they are an economic alternative to other materials, and substantial progress in strengthening these alloys at high temperatures has recently been achieved by applying new alloy concepts. Research on iron aluminides started more than a century ago and has led to many fundamental findings. This article summarizes the current knowledge of this field in continuation of previous reviews. © 2019 by Annual Reviews. All rights reserved.

  • 2019 • 56
    Electron-phonon coupling and superconductivity-induced distortion of the phonon lineshape in V3Si
    Sauer, A. and Zocco, D.A. and Said, A.H. and Heid, R. and Böhmer, A. and Weber, F.
    PHYSICAL REVIEW B. Volume: 99 (2019)
    view abstract10.1103/PhysRevB.99.134511

    Phonon measurements in the A15-type superconductors were complicated in the past because of the unavailability of large single crystals for inelastic neutron scattering, e.g., in the case of Nb3Sn, or unfavorable neutron scattering properties in the case of V3Si. Hence, only few studies of the lattice dynamical properties with momentum resolved methods were published, in particular below the superconducting transition temperature Tc. Here, we overcome these problems by employing inelastic x-ray scattering and report a combined experimental and theoretical investigation of lattice dynamics in V3Si with the focus on the temperature-dependent properties of low-energy acoustic phonon modes in several high-symmetry directions. We paid particular attention to the evolution of the soft phonon mode of the structural phase transition observed in our sample at Ts=18.9K, i.e., just above the measured superconducting phase transition at Tc=16.8K. Theoretically, we predict lattice dynamics including electron-phonon coupling based on density-functional-perturbation theory and discuss the relevance of the soft phonon mode with regard to the value of Tc. Furthermore, we explain superconductivity-induced anomalies in the lineshape of several acoustic phonon modes using a model proposed by Allen et al, [Phys. Rev. B 56, 5552 (1997)10.1103/PhysRevB.56.5552]. © 2019 American Physical Society.

  • 2019 • 55
    Quasi-Fermi-Level Splitting of Cu -Poor and Cu -Rich CuIn S2 Absorber Layers
    Lomuscio, A. and Rödel, T. and Schwarz, T. and Gault, B. and Melchiorre, M. and Raabe, D. and Siebentritt, S.
    PHYSICAL REVIEW APPLIED. Volume: 11 (2019)
    view abstract10.1103/PhysRevApplied.11.054052

    Cu(In,Ga)S2-based solar cells are interesting tandem partners for Si or chalcopyrite solar cells, but suffer from a low open-circuit voltage. Recently, record efficiencies have been achieved by using higher growth temperatures for the absorber. To understand the effect of higher growth temperatures, we investigate the structural and electronic properties of CuInS2 absorbers. By investigating the absorber alone as opposed to complete solar cells, we can separate changes in the absorber from effects of the interface properties. We show that the quasi-Fermi-level splitting, which indicates the maximum open-circuit voltage an absorber is capable of, increases with higher growth temperature. The quasi-Fermi-level splitting is limited by a deep defect, the concentration of which decreases with higher growth temperature and is less prominent in Cu-rich films. Thus, we demonstrate that the open-circuit voltage of CuInS2-based solar cells is limited to below 850 mV by the absorber itself, independent of the interface. In contrast to the changes in the electronic properties, the structural properties are rather independent of temperature within the range investigated but are significantly influenced by the composition. © 2019 authors. Published by the American Physical Society.

  • 2019 • 54
    Imaging individual solute atoms at crystalline imperfections in metals
    Katnagallu, S. and Stephenson, L.T. and Mouton, I. and Freysoldt, C. and Subramanyam, A.P.A. and Jenke, J. and Ladines, A.N. and Neumeier, S. and Hammerschmidt, T. and Drautz, R. and Neugebauer, J. and Vurpillot, F. and Raabe, D. and Gault, B.
    NEW JOURNAL OF PHYSICS. Volume: 21 (2019)
    view abstract10.1088/1367-2630/ab5cc4

    Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials' properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining FIM with time-of-flight mass-spectrometry (tof-ms). Elemental identification and correlation to FIM images enabled by data mining of combined tof-ms delivers a truly analytical-FIM (A-FIM). Contrast variations due to different chemistries is also interpreted from density-functional theory (DFT). A-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni-Re binary alloy during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.

  • 2018 • 53
    Influence of Temperature and Electrolyte Concentration on the Structure and Catalytic Oxygen Evolution Activity of Nickel–Iron Layered Double Hydroxide
    Andronescu, C. and Seisel, S. and Wilde, P. and Barwe, S. and Masa, J. and Chen, Y.-T. and Ventosa, E. and Schuhmann, W.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 24 (2018)
    view abstract10.1002/chem.201803165

    NiFe layered double hydroxide (LDH) is inarguably the most active contemporary catalyst for the oxygen evolution reaction under alkaline conditions. However, the ability to sustain unattenuated performance under challenging industrial conditions entailing high corrosivity of the electrolyte (≈30 wt. % KOH), high temperature (>80 °C) and high current densities (>500 mA cm−2) is the ultimate criterion for practical viability. This work evaluates the chemical and structural stability of NiFe LDH at conditions akin to practical electrolysis, in 30 % KOH at 80 °C, however, without electrochemical polarization, and the resulting impact on the OER performance of the catalyst. Post-analysis of the catalyst by means of XRD, TEM, FT-IR, and Raman spectroscopy after its immersion into 7.5 m KOH at 80 °C for 60 h revealed a transformation of the structure from NiFe LDH to a mixture of crystalline β-Ni(OH)2 and discrete predominantly amorphous FeOOH containing minor non-homogeneously distributed crystalline domains. These structural and compositional changes led to a drastic loss of the OER activity. It is therefore recommended to study catalyst stability at industrially relevant conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 52
    Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests
    Luo, W. and Kirchlechner, C. and Fang, X. and Brinckmann, S. and Dehm, G. and Stein, F.
    MATERIALS AND DESIGN. Volume: 145 (2018)
    view abstract10.1016/j.matdes.2018.02.045

    Cubic and hexagonal NbCo2 Laves phases are known to have composition dependent hardness and yield strength. However, it is unknown whether this dependence is also reflected in their fracture toughness values. In order to elucidate the fracture behavior, single-crystalline micro-cantilevers of the cubic and hexagonal NbCo2 Laves phases having different compositions were fabricated in the diffusion layers grown by the diffusion couple technique. Micro-cantilever bending tests were performed to study the composition- and crystal-structure-dependence of the fracture toughness. To exclude the influence of micro-cantilever geometry, pentagonal and rectangular beams were tested and found to result in the same fracture toughness value. The present results reveal that neither a change of the crystal structure nor a change in chemical composition has a significant influence on the fracture toughness of NbCo2 Laves phase. © 2018 Elsevier Ltd

  • 2018 • 51
    Microstructure and mechanical properties in the thin film system Cu-Zr
    Oellers, T. and Raghavan, R. and Chakraborty, J. and Kirchlechner, C. and Kostka, A. and Liebscher, C.H. and Dehm, G. and Ludwig, Al.
    THIN SOLID FILMS. Volume: 645 (2018)
    view abstract10.1016/j.tsf.2017.10.030

    A composition-spread Cu-Zr thin film library with Zr contents from 2.5 up to 6.5 at.% was synthesized by magnetron sputtering on a thermally oxidized Si wafer. The compositional and microstructural variations of the Cu-Zr thin film across the composition gradient were examined using energy dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution scanning and transmission electron microscopy of cross-sections fabricated by focused ion beam milling. Composition-dependent hardness and elastic modulus values were obtained by nanoindentation for measurement areas with discrete Zr contents along the composition gradient. Similarly, the electrical resistivity was investigated by 4-point resistivity measurements to study the influence of Zr composition and microstructural changes in the thin film. Both, the mechanical and electrical properties reveal a significant increase in hardness and resistivity with increasing Zr content. The trends of the mechanical and functional properties are discussed with respect to the local microstructure and composition of the thin film library. © 2017

  • 2018 • 50
    Understanding the Effect of Au in Au-Pd Bimetallic Nanocrystals on the Electrocatalysis of the Methanol Oxidation Reaction
    Kelly, C.H.W. and Benedetti, T.M. and Alinezhad, A. and Schuhmann, W. and Gooding, J.J. and Tilley, R.D.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 122 (2018)
    view abstract10.1021/acs.jpcc.8b05407

    Pd or Pt alloyed with a secondary metal are the typical catalysts at the anode for the direct oxidation of methanol. The secondary metal is employed to diminish deactivation commonly ascribed to CO poisoning. Here we investigate the origin of the improved performance of Au-Pd core-shell and alloy nanocrystals as electrocatalysts for the methanol oxidation reaction (MOR), relative to Pd alone. Monodisperse Au-Pd core-shell nanocrystals were synthesized using H2 as a mild reducing agent followed by annealing under a 5% H2 atmosphere to produce the Au-Pd alloys. The nanocrystals were characterized using high-resolution electron microscopy to confirm their structures. The core-shell and alloy nanocrystals showed an improvement in specific activity with respect to pure Pd nanocrystals. Importantly, the stability was also improved by the inclusion of Au for both nanocrystals, being 2.7× higher for the alloy than for the core-shell after 30 min, while the activity is completely lost for the Pd nanocrystals within 10 min. We show that there is no evidence of CO formation for any of the Pd-based catalysts in an alkaline environment. The origin of the improvement in terms of both activity and stability results from positive shifts in the PdO formation/reduction potential caused by the presence of Au, which results in more Pd sites available for the MOR. © 2018 American Chemical Society.

  • 2018 • 49
    From Quasicrystals to Crystals with Interpenetrating Icosahedra in Ca-Au-Al: In Situ Variable-Temperature Transformation
    Pham, J. and Meng, F. and Lynn, M.J. and Ma, T. and Kreyssig, A. and Kramer, M.J. and Goldman, A.I. and Miller, G.J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 140 (2018)
    view abstract10.1021/jacs.7b10358

    The irreversible transformation from an icosahedral quasicrystal (i-QC) CaAu4.39Al1.61 to its cubic 2/1 crystalline approximant (CA) Ca13Au56.31(3)Al21.69 (CaAu4.33(1)Al1.67, Pa3 (No. 205); Pearson symbol: cP728; a = 23.8934(4)), starting at ∼570 °C and complete by ∼650 °C, is discovered from in situ, high-energy, variable-temperature powder X-ray diffraction (PXRD), thereby providing direct experimental evidence for the relationship between QCs and their associated CAs. The new cubic phase crystallizes in a Tsai-type approximant structure under the broader classification of polar intermetallic compounds, in which atoms of different electronegativities, viz., electronegative Au + Al vs electropositive Ca, are arranged in concentric shells. From a structural chemical perspective, the outermost shell of this cubic approximant may be described as interpenetrating and edge-sharing icosahedra, a perspective that is obtained by splitting the traditional structural description of this shell as a 92-atom rhombic triacontahedron into an 80-vertex cage of primarily Au [Au59.86(2)Al17.14□3.00] and an icosahedral shell of only Al [Al10.5□1.5]. Following the proposal that the cubic 2/1 CA approximates the structure of the i-QC and on the basis of the observed transformation, an atomic site analysis of the 2/1 CA, which shows a preference to maximize the number of heteroatomic Au-Al nearest neighbor contacts over homoatomic Al-Al contacts, implies a similar outcome for the i-QC structure. Analysis of the most intense reflections in the diffraction pattern of the cubic 2/1 CA that changed during the phase transformation shows correlations with icosahedral symmetry, and the stability of this cubic phase is assessed using valence electron counts. According to electronic structure calculations, a cubic 1/1 CA, "Ca24Au88Al64" (CaAu3.67Al2.67) is proposed. © 2017 American Chemical Society.

  • 2018 • 48
    Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale
    Chang, Y. and Breen, A.J. and Tarzimoghadam, Z. and Kürnsteiner, P. and Gardner, H. and Ackerman, A. and Radecka, A. and Bagot, P.A.J. and Lu, W. and Li, T. and Jägle, E.A. and Herbig, M. and Stephenson, L.T. and Moody, M.P. and Rugg, D. and Dye, D. and Ponge, D. and Raabe, D. and Gault, B.
    ACTA MATERIALIA. Volume: 150 (2018)
    view abstract10.1016/j.actamat.2018.02.064

    Ti and its alloys have a high affinity for hydrogen and are typical hydride formers. Ti-hydride are brittle phases which probably cause premature failure of Ti-alloys. Here, we used atom probe tomography and electron microscopy to investigate the hydrogen distribution in a set of specimens of commercially pure Ti, model and commercial Ti-alloys. Although likely partly introduced during specimen preparation with the focused-ion beam, we show formation of Ti-hydrides along α grain boundaries and α/β phase boundaries in commercial pure Ti and α+β binary model alloys. No hydrides are observed in the α phase in alloys with Al addition or quenched-in Mo supersaturation. © 2018 Acta Materialia Inc.

  • 2018 • 47
    Atypical titration curves for GaAl12 Keggin-ions explained by a joint experimental and simulation approach
    Sulpizi, M. and Lützenkirchen, J.
    JOURNAL OF CHEMICAL PHYSICS. Volume: 148 (2018)
    view abstract10.1063/1.5024201

    Although they have been widely used as models for oxide surfaces, the deprotonation behaviors of the Keggin-ions (MeAl127+) and typical oxide surfaces are very different. On Keggin-ions, the deprotonation occurs over a very narrow pH range at odds with the broad charging curve of larger oxide surfaces. Depending on the Me concentration, the deprotonation curve levels off sooner (high Me concentration) or later (for low Me concentration). The leveling off shows the onset of aggregation before which the Keggin-ions are present as individual units. We show that the atypical titration data previously observed for some GaAl12 solutions in comparison to the originally reported data can be explained by the presence of Ga2Al11 ions. The pKa value of aquo-groups bound to octahedral Ga was determined from ab initio molecular dynamics simulations relative to the pure GaAl12 ions. Using these results within a surface complexation model, the onset of deprotonation of the crude solution is surprisingly well predicted and the ratio between the different species is estimated to be in the proportion 20 (Ga2Al11): 20 (Al13): 60 (GaAl12). © 2018 Author(s).

  • 2018 • 46
    Multiscale Characterization of Microstructure in Near-Surface Regions of a 16MnCr5 Gear Wheel After Cyclic Loading
    Medghalchi, S. and Jamebozorgi, V. and Bala Krishnan, A. and Vincent, S. and Salomon, S. and Basir Parsa, A. and Pfetzing, J. and Kostka, A. and Li, Y. and Eggeler, G. and Li, T.
    JOM. Volume: (2018)
    view abstract10.1007/s11837-018-2931-z

    The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading. © 2018 The Minerals, Metals & Materials Society

  • 2018 • 45
    Hedgehog Spin-Vortex Crystal Antiferromagnetic Quantum Criticality in CaK (Fe1-xNix)4As4 Revealed by NMR
    Ding, Q.-P. and Meier, W.R. and Cui, J. and Xu, M. and Böhmer, A.E. and Bud'Ko, S.L. and Canfield, P.C. and Furukawa, Y.
    PHYSICAL REVIEW LETTERS. Volume: 121 (2018)
    view abstract10.1103/PhysRevLett.121.137204

    Two ordering states, antiferromagnetism and nematicity, have been observed in most iron-based superconductors (SCs). In contrast to those SCs, the newly discovered SC CaK(Fe1-xNix)4As4 exhibits an antiferromagnetic (AFM) state, called hedgehog spin-vortex crystal (SVC) structure, without nematic order, providing the opportunity for the investigation into the relationship between spin fluctuations and SC without any effects of nematic fluctuations. Our As75 nuclear magnetic resonance studies on CaK(Fe1-xNix)4As4 (0≤x≤0.049) revealed that CaKFe4As4 is located close to a hidden hedgehog SVC AFM quantum-critical point (QCP). The magnetic QCP without nematicity in CaK(Fe1-xNix)4As4 highlights the close connection of spin fluctuations and superconductivity in iron-based SCs. The advantage of stoichiometric composition also makes CaKFe4As4 an ideal platform for further detailed investigation of the relationship between magnetic QCP and superconductivity in iron-based SCs without disorder effects. © 2018 American Physical Society.

  • 2018 • 44
    Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts
    Pielsticker, L. and Zegkinoglou, I. and Divins, N.J. and Mistry, H. and Chen, Y.-T. and Kostka, A. and Boscoboinik, J.A. and Cuenya, B.R.
    JOURNAL OF PHYSICAL CHEMISTRY B. Volume: 122 (2018)
    view abstract10.1021/acs.jpcb.7b06984

    Surface segregation, restructuring, and sintering phenomena in size-selected copper-nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile of the elemental composition of the particles was determined under operando CO2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. This leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments. © 2017 American Chemical Society.

  • 2018 • 43
    Computationally Efficient Phase-field Simulation Studies Using RVE Sampling and Statistical Analysis
    Schwarze, C. and Darvishi Kamachali, R. and Kühbach, M. and Mießen, C. and Tegeler, M. and Barrales-Mora, L. and Steinbach, I. and Gottstein, G.
    COMPUTATIONAL MATERIALS SCIENCE. Volume: 147 (2018)
    view abstract10.1016/j.commatsci.2018.02.005

    For large-scale phase-field simulations, the trade-off between accuracy and computational cost as a function of the size and number of simulations was studied. For this purpose, a large reference representative volume element (RVE) was incrementally subdivided into smaller solitary samples. We have considered diffusion-controlled growth and early ripening of δ′ (Al3Li) precipitate in a model Al-Li system. The results of the simulations show that decomposition of reference RVE can be a valuable computational technique to accelerate simulations without a substantial loss of accuracy. In the current case study, the precipitate number density was found to be the key controlling parameter. For a pre-set accuracy, it turned out that large-scale simulations of the reference RVE can be replaced by simulating a combination of smaller solitary samples. This shortens the required simulation time and improves the memory usage of the simulation considerably, and thus substantially increases the efficiency of massive parallel computation for phase-field applications. © 2018 Elsevier B.V.

  • 2018 • 42
    Fabrication of perovskite-based porous nanotubes as efficient bifunctional catalyst and application in hybrid lithium-oxygen batteries
    Gong, H. and Wang, T. and Guo, H. and Fan, X. and Liu, X. and Song, L. and Xia, W. and Gao, B. and Huang, X. and He, J.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 6 (2018)
    view abstract10.1039/c8ta04599b

    The design of efficient oxygen electrocatalysts is extremely important and urgent for much energy storage and conversion equipment. Among these, the high energy densities of lithium-oxygen batteries (LOBs) have driven us to explore bifunctional catalysts. Compared with non-aqueous LOBs, which have been blamed for poor cycling stability due to their undesirable side reaction, hybrid LOBs have been considered an alternative solution due to their high electrochemical reversibility and safeness. Here, one-dimensional hierarchical mesoporous/macroporous LaMn0.7Co0.3O3-x nanotubes were synthesized through an electrospinning method combined with an annealing treatment. With the suitable heat treatment and rational doping with elemental Co, the LMCO-800 sample shows a well-designed hierarchical porous nanotube structure and possess great bifunctional electrocatalytic performance. The linear sweep voltammetry (LSV) curves show that the half-wave potential (E1/2) of the LMCO-800 sample is 0.72 V (vs. RHE) and the average electron transfer number (n) is calculated to be 3.8. Moreover, the successful doping of elemental Co into the LMCO-800 nanotubes can shorten the average distance of the Mn-Mn atoms and promote the formation of O-O bonds, contributing to the enhanced OER performance. The high specific surface area and one-dimensional nanotubes can greatly benefit oxygen diffusion, facilitate electrolyte infiltration and improve electron transfer. Consequently, the as-assembled hybrid lithium-oxygen batteries with an LMCO-800 cathode exhibit superior cycling stability. © 2018 The Royal Society of Chemistry.

  • 2018 • 41
    Antibacterial Efficacy of Sacrifical Anode Thin Films Combining Silver with Platinum Group Elements within a Bacteria-Containing Human Plasma Clot
    Abuayyash, A. and Ziegler, N. and Gessmann, J. and Sengstock, C. and Schildhauer, T.A. and Ludwig, Al. and Köller, M.
    ADVANCED ENGINEERING MATERIALS. Volume: 20 (2018)
    view abstract10.1002/adem.201700493

    Silver (Ag) dots arrays (64 and 400 dots per mm2) are fabricated on a continuous platinum (Pt), palladium (Pd), or iridium (Ir) thin film (sacrifical anode systems for Ag) and for comparison on titanium (Ti) film (non-sacrifical anode system for Ag) by sputter deposition and photolithographic patterning. The samples are embedded within a tissue-like plasma clot matrix containing Staphylococcus aureus (S. aureus), cultivated for 24 h. Bacterial growth is analyzed by fluorescence microscopy. Among platinum group sacrifical anode elements and a dense Ag sample, only the high Ag ion releasing Ag–Ir system is able to inhibit the bacterial growth within the adjacent plasma clot matrix. This study demonstrates that the antibacterial efficiency of Ag coatings is reduced under tissue-like conditions. However, the new sacrificial anode based Ag–Ir system can overcome this limitation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 40
    Electrocatalytic Nanoparticles That Mimic the Three-Dimensional Geometric Architecture of Enzymes: Nanozymes
    Benedetti, T.M. and Andronescu, C. and Cheong, S. and Wilde, P. and Wordsworth, J. and Kientz, M. and Tilley, R.D. and Schuhmann, W. and Gooding, J.J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 140 (2018)
    view abstract10.1021/jacs.8b08664

    Enzymes are characterized by an active site that is typically embedded deeply within the protein shell thus creating a nanoconfined reaction volume in which high turnover rates occur. We propose nanoparticles with etched substrate channels as a simplified enzyme mimic, denominated nanozymes, for electrocatalysis. We demonstrate increased electrocatalytic activity for the oxygen reduction reaction using PtNi nanoparticles with isolated substrate channels. The PtNi nanoparticles comprise an oleylamine capping layer that blocks the external surface of the nanoparticles participating in the catalytic reaction. Oxygen reduction mainly occurs within the etched channels providing a nanoconfined reaction volume different from the bulk electrolyte conditions. The oxygen reduction reaction activity normalized by the electrochemically active surface area is enhanced by a factor of 3.3 for the nanozymes compared to the unetched nanoparticles and a factor of 2.1 compared to mesoporous PtNi nanoparticles that possess interconnecting pores. © Copyright 2018 American Chemical Society.

  • 2018 • 39
    Elemental segregation to twin boundaries in a MnAl ferromagnetic Heusler alloy
    Palanisamy, D. and Raabe, D. and Gault, B.
    SCRIPTA MATERIALIA. Volume: 155 (2018)
    view abstract10.1016/j.scriptamat.2018.06.037

    Electron microscopy and atom probe tomography were combined to investigate the crystallography and chemistry of a single twin boundary (TB) in a rare-earth-free ferromagnetic MnAl Heusler alloy. The results establish a significant segregation of Mn along the twin boundaries. An enrichment of approx. ~8 at.% Mn was measured along the twin boundary with a confined depletion outside the twin boundary, suggesting short range solute diffusion occurring during massive transformation. © 2018 Elsevier Ltd

  • 2018 • 38
    Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys
    Im, H.J. and Makineni, S.K. and Gault, B. and Stein, F. and Raabe, D. and Choi, P.-P.
    SCRIPTA MATERIALIA. Volume: 154 (2018)
    view abstract10.1016/j.scriptamat.2018.05.041

    We report on the sub-nanometer scale characterization of Co-12Ti-4Mo and Co-12Ti-4Cr (at.%) model alloys. Atom probe tomography reveals that Co and Cr partition to γ, whereas Ti and Mo to γ′. Additions of Mo and Cr to the reference Co-12Ti system lead to strong increases in γ′ volume fraction by about 25% and 12%, respectively. Element-specific spatial distribution maps along the [001] direction of the L12-ordered γ′ phase reveal that both Mo and Cr preferentially replace Ti on its sublattice. The remaining excess Ti is available for formation of additional γ′, resulting in enhanced γ′ volume fractions. © 2018 Elsevier Ltd

  • 2018 • 37
    Development of high modulus steels based on the Fe – Cr – B system
    Baron, C. and Springer, H. and Raabe, D.
    MATERIALS SCIENCE AND ENGINEERING A. Volume: 724 (2018)
    view abstract10.1016/j.msea.2018.03.082

    We present a novel alloy design strategy for cost-efficient high modulus steels with an increased stiffness / mass density ratio. The concept is based on the liquid metallurgy synthesis of Fe – Cr – B based alloys, straightforward processability, and well tuneable mechanical properties via plain heat treatments. The base alloy Fe – 18 Cr – 1.6 B (wt%) contained 14–17 vol% of (Cr,Fe)2B particles of ellipsoidal morphology in a ferritic matrix. Hot rolled materials revealed a specific modulus of 32.8 GPa g−1 cm3, exceeding that of conventional Fe-Cr steels by almost 30%. Mechanical properties obtained are comparable to TiB2 based high modulus steels. Addition of 1 wt% Cu to the base alloy did not interact with the formation, fraction, size and morphology of (Cr,Fe)2B particles, and allowed to mildly increase the strength values by ageing treatments, however at the price of a reduction of the specific modulus. C additions of 0.2 wt% did not affect the (Cr,Fe)2B particle microstructure greatly, but free C dissolved in the matrix enables for the first time to utilize the wide range of microstructures and mechanical properties of established C-containing high strength steels also in high modulus steels. © 2018 Elsevier B.V.

  • 2018 • 36
    Compositional evolution of long-period stacking ordered structures in magnesium studied by atom probe tomography
    Kim, J.-K. and Guo, W. and Choi, P.-P. and Raabe, D.
    SCRIPTA MATERIALIA. Volume: 156 (2018)
    view abstract10.1016/j.scriptamat.2018.07.017

    Mg alloys containing long-period stacking ordered (LPSO) structures are strong and ductile compared to conventional Mg alloys. We study here the compositional evolution of LPSO structures in a Mg97Y2Zn1 (at.%) alloy upon annealing at 500 °C using atom probe tomography. In the material annealed for 2.5 h, the Zn/Y ratio of the building blocks in the interdendritic LPSO phase (0.73) is close to the stoichiometric composition of Y8Zn6 L12 clusters while that in plate-type LPSO structures (0.66) slightly deviates from the ideal value. The Y/Zn enrichment in LPSO structures in the α-Mg matrix slightly decreases with increasing annealing time. © 2018 Elsevier Ltd

  • 2018 • 35
    On the Electropolishing Mechanism of Nickel Titanium in Methanolic Sulfuric acid − An Electrochemical Impedance Study
    Fushimi, K. and Neelakantan, L. and Eggeler, G. and Hassel, A.W.
    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE. Volume: 215 (2018)
    view abstract10.1002/pssa.201800011

    Electropolishing of NiTi shape memory alloys is possible in methanolic 3 m H2SO4. The electro-dissolution behavior of NiTi in methanolic 3 m H2SO4 is ascertained in terms of Nyquist plots using electrochemical impedance spectroscopy (EIS) under limiting current flow (mass transfer control) condition. The electro-dissolution behavior is studied under convective conditions using a rotating disc electrode. The influence of changes in rotation rate, applied potential, and temperature are determined. This study demonstrates that electro-dissolution under mass transfer condition follows a compact salt-film mechanism. In order to quantitatively characterize the salt film formed during electropolishing, EIS is performed under stationary conditions. The increase in applied voltage causes an increase in polarization resistance and decrease in capacitance of the interface film. © 2018 The Authors. Published by Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 34
    NiTi-Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization
    Kirsch, S.-M. and Welsch, F. and Michaelis, N. and Schmidt, M. and Wieczorek, A. and Frenzel, J. and Eggeler, G. and Schütze, A. and Seelecke, S.
    ENERGY TECHNOLOGY. Volume: 6 (2018)
    view abstract10.1002/ente.201800152

    Solid-state cooling is an environmentally friendly, no global warming potential alternative to vapor compression-based systems. Elastocaloric cooling based on NiTi shape memory alloys exhibits excellent cooling capabilities. Due to the high specific latent heats activated by mechanical loading/unloading, large temperature changes can be generated in the material. The small required work input enables a high coefficient of performance. An overview of elastocaloric cooling from basic principles, such as elastocaloric cooling cycles, material characterization, modeling, and optimization, to the design of elastocaloric cooling devices is presented. Current work performed within the DFG (Deutsche Forschungsgemeinschaft) Priority Program SPP 1599 “Ferroic Cooling”, which is focused on the development and realization of a continuously operating elastocaloric cooling device, is highlighted. The cooling device operates in a rotatory mode with wires under tensile loading. The design allows maximization of cooling power by suitable wire diameter scaling as well as efficiency optimization by implementing a novel drive concept. Finally, computer-aided design (CAD) models of the discussed solid-state air cooling device are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 33
    Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy
    Wang, H.L. and Hao, Y.L. and He, S.Y. and Li, T. and Cairney, J.M. and Wang, Y.D. and Wang, Y. and Obbard, E.G. and Prima, F. and Du, K. and Li, S.J. and Yang, R.
    ACTA MATERIALIA. Volume: 135 (2017)
    view abstract10.1016/j.actamat.2017.06.040

    A martensitic transformation (MT) is a typical first-order diffusionless crystal structural change with strong autocatalysis like avalanche at a speed of sound propagation. This unique characteristic, however, is undetectable in some multifunctional titanium alloys. Recently, a nano-scale elastically confined MT mechanism was proposed because a nano-scale Nb modulation in a Ti-Nb based alloy was observed. Here we analyze the elastic confinement in details and its induced novel properties in a wide temperature range. The statistical analyses of atom probe tomography (APT) data confirm the existence of the nano-scale Nb concentration modulation. The synchrotron X-ray diffraction (SXRD) profiles demonstrate that the nano-scale Nb modulation causes weak diffuse scattering, as evidenced by the extreme broad diffraction bands. The tensile tests find a critical temperature of ∼150 K, where the critical stress to induce the MT and Young's modulus reach the minimum and the superelastic strain reaches the maximum (∼4.5%) and keeps constant as the temperature decreases further to <4.2 K. To reveal these abnormal behaviors of the MT, the Born criterion governing the elastic stability of cubic crystal is modified by introducing an elastic confinement term and a new Clausius-Clapeyron relationship is established to evaluate the elastically confined MT. The results are consistent with the experimental findings, including the solely stress-induced (no thermally induced) reversibility. © 2017 Acta Materialia Inc.

  • 2017 • 32
    On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys
    Ungár, T. and Frenzel, J. and Gollerthan, S. and Ribárik, G. and Balogh, L. and Eggeler, G.
    JOURNAL OF MATERIALS RESEARCH. Volume: (2017)
    view abstract10.1557/jmr.2017.267

    The present work addresses the competition between dislocation plasticity and stress-induced martensitic transformations in crack affected regions of a pseudoelastic NiTi miniature compact tension specimen. For this purpose X-ray line profile analysis was performed after fracture to identify dislocation densities and remnant martensite volume fractions in regions along the crack path. Special emphasis was placed on characterizing sub fracture surface zones to obtain depth profiles. The stress affected zone in front of the crack-tip is interpreted in terms of a true plastic zone associated with dislocation plasticity and a pseudoelastic zone where stress-induced martensite can form. On unloading, most of the stress-induced martensite transforms back to austenite but a fraction of it is stabilized by dislocations in both, the irreversible martensite and the surrounding austenite phase. The largest volume fraction of the irreversible or remnant martensite along with the highest density of dislocations in this phase was found close to the primary crack-tip. With increasing distance from the primary crack-tip both, the dislocation density and the volume fraction of irreversible martensite decrease to lower values. Copyright © Materials Research Society 2017

  • 2017 • 31
    Partial recrystallization of gum metal to achieve enhanced strength and ductility
    Zhang, J.-L. and Tasan, C.C. and Lai, M.J. and Yan, D. and Raabe, D.
    ACTA MATERIALIA. Volume: 135 (2017)
    view abstract10.1016/j.actamat.2017.06.051

    Here we present a microstructure design approach which leads to partial recrystallization and nano-precipitation within the same single-step heat treatment. This produces a dual-constituent microstructure in Ti-Nb based gum metal, which consists of nano-ω-particle-rich ultrafine recrystallized grain chains embedded in ω-lean subgrain-containing recovered zones. This partially recrystallized microstructure exhibits an improved strength-ductility combination that surpasses the inverse strength-ductility relationship exhibited by materials with similar composition. The strengthening effects due to precipitates and grain refinement were studied by nanoindentation. The deformation mechanisms of the partially recrystallized material were investigated by in-situ scanning electron microscope tensile tests, micro-strain mapping and post-mortem microstructure characterization. The improved mechanical properties are attributed to the high yield strength of the recrystallized grains and the sequential activation of dislocation slip and dislocation channeling. © 2017 Acta Materialia Inc.

  • 2017 • 30
    In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys
    Zhang, Z. and Guo, J. and Dehm, G. and Pippan, R.
    ACTA MATERIALIA. Volume: 138 (2017)
    view abstract10.1016/j.actamat.2017.07.039

    We report the thermal stability of supersaturated CuCr nanocrystallines alloys at the atomic resolution using modern spherical aberration-corrected transmission electron microscopy (TEM) via performing in-situ structural and spectroscopy experiments. It is found that CuCr nanocrystallines are not only subjected to a structural change but also undergo a chemical evolution upon annealing. Chemical destabilization of supersaturated CuCr nanocrystallines occurs at a quite low temperature. Heating triggers a rapid separation of Cu and Cr grains at the forced intermixing zone, accompanied by an obvious decrease of average interface width whereas the grain growth is not significant. Elemental profiles and images recorded in real time reveal that the local compositions vary with heating, which in turn permits to derive the concentration of excess vacancy generated by deformation and observe its evolution with temperature, further to analyze the dynamic behavior in nanocrystalline materials. Electronic structure changes at the interface forced intermixing zone are revealed by the fine structure analysis. The study uncovers the interplay between the thermal stability and chemical decomposition process of bulk nanostructured materials in real-time. © 2017

  • 2017 • 29
    Unraveling compositional effects on the light-induced oxygen evolution in Bi(V-Mo-X)O4 material libraries
    Gutkowski, R. and Khare, C. and Conzuelo, F. and Kayran, Y.U. and Ludwig, Al. and Schuhmann, W.
    ENERGY AND ENVIRONMENTAL SCIENCE. Volume: 10 (2017)
    view abstract10.1039/c7ee00287d

    The influence of co-deposited transition metals X (X = Ta, W, Nb) with various relative concentrations on the photoelectrochemical performance of BiVO4 is investigated. Thin film material libraries with well-defined composition gradients of Bi, V and two transition metals are fabricated by combinatorial sputter co-deposition. Materials with the highest photoelectrochemical performance are identified by high-throughput characterization of the Bi(V-Mo-X)O4 material libraries using an optical scanning droplet cell. Bi(V-Mo-W)O4 and Bi(V-Mo-Nb)O4 material libraries show the highest improvement in the photocurrent, with ten times higher photocurrents of up to 1 mA cm-2 compared to a BiVO4 reference material library. Deviations from the V:Bi equiatomic ratio lead to a decrease in the photocurrent for pristine monoclinic BiVO4. By the addition of transition metals this effect is minimized and no significant decrease in the photocurrent occurs up to 10 at% variation from the equiatomic V:Bi ratio. Excellent photoelectrochemical performance is reached under these conditions in regions with a V:Bi atomic ratio of 70:30 and co-deposited Nb concentrations of >10 at%. Scanning photoelectrochemical microscopy allows the evaluation of the correlation between the generated oxygen at a photoanode and the measured photocurrent. © 2017 The Royal Society of Chemistry.

  • 2017 • 28
    Gold-Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity
    Pizzutilo, E. and Freakley, S.J. and Cherevko, S. and Venkatesan, S. and Hutchings, G.J. and Liebscher, C.H. and Dehm, G. and Mayrhofer, K.J.J.
    ACS CATALYSIS. Volume: 7 (2017)
    view abstract10.1021/acscatal.7b01447

    During application, electrocatalysts are exposed to harsh electrochemical conditions, which can induce degradation. This work addresses the degradation of AuPd bimetallic catalysts used for the electrocatalytic production of hydrogen peroxide (H2O2) by the oxygen reduction reaction (ORR). Potential-dependent changes in the AuPd surface composition occur because the two metals have different dissolution onset potentials, resulting in catalyst dealloying. Using a scanning flow cell (SFC) with an inductively coupled plasma mass spectrometer (ICP-MS), simultaneous Pd and/or Au dissolution can be observed. Thereafter, three accelerated degradation protocols (ADPs), simulating different dissolution regimes, are employed to study the catalyst structure degradation on the nanoscale with identical location (IL) TEM. When only Pd or both Au and Pd dissolve, the composition changes rapidly and the surface becomes enriched with Au, as observed by cyclic voltammetry and elemental mapping. Such changes are mirrored by the evolution of electrocatalytic performances toward H2O2 production. Our experimental findings are finally summarized in a dissolution/structure/selectivity mechanism, providing a clear picture of the degradation of bimetallic catalyst used for H2O2 synthesis. © 2017 American Chemical Society.

  • 2017 • 27
    Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry
    Kositzki, R. and Mebs, S. and Schüth, N. and Leidel, N. and Schwartz, L. and Karnahl, M. and Wittkamp, F. and Daunke, D. and Grohmann, A. and Apfel, U.-P. and Gloaguen, F. and Ott, S. and Haumann, M.
    DALTON TRANSACTIONS. Volume: 46 (2017)
    view abstract10.1039/c7dt02720f

    Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds. © 2017 The Royal Society of Chemistry.

  • 2017 • 26
    High-throughput study of binary thin film tungsten alloys
    Nikolić, V. and Wurster, S. and Savan, A. and Ludwig, Al. and Pippan, R.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS AND HARD MATERIALS. Volume: 69 (2017)
    view abstract10.1016/j.ijrmhm.2017.07.017

    Combinatorial magnetron co-sputtering from elemental sources was applied to produce W-alloy thin film composition spread materials libraries with well-defined, continuous composition gradients (film thicknesses between 1 and 2.5 μm). Three systems were studied: W-Fe (0–7 at.%), W-Ti (0–15 at.%) and W-Ir (0–12 at.%). High-throughput characterization of the materials libraries comprised of chemical, morphological and microstructural analyses. Scanning electron microscope investigations revealed that the films have a columnar structure of inverted cone-like units separated by voided boundaries, with a strong correlation to the alloying element content. Significant morphological changes occurred with an increase in the amount of the added element; W films with lower at.% of the alloying element had higher density and tighter grain boundaries, altering towards an increased amount of voids as the concentration of the alloying element increased. Electron backscatter diffraction scanning was used to determine microstructural components (grain size, grain shape, texture evolution), in dependence on the concentration of the alloying element. © 2017 Elsevier Ltd

  • 2017 • 25
    The Space Confinement Approach Using Hollow Graphitic Spheres to Unveil Activity and Stability of Pt-Co Nanocatalysts for PEMFC
    Pizzutilo, E. and Knossalla, J. and Geiger, S. and Grote, J.-P. and Polymeros, G. and Baldizzone, C. and Mezzavilla, S. and Ledendecker, M. and Mingers, A. and Cherevko, S. and Schüth, F. and Mayrhofer, K.J.J.
    ADVANCED ENERGY MATERIALS. Volume: 7 (2017)
    view abstract10.1002/aenm.201700835

    The performance of polymer electrolyte fuel cells is strongly correlated to the electrocatalytic activity and stability. In particular, the latter is the result of an interplay between different degradation mechanisms. The essential high stability, demanded for real applications, requires the synthesis of advanced electrocatalysts that withstand the harsh operation conditions. In the first part of this study, the synthesis of oxygen reduction electrocatalysts consisting of Pt-Co (i.e., Pt5Co, Pt3Co, and PtCo) alloyed nanoparticles encapsulated in the mesoporous shell of hollow graphitic spheres (HGS) is reported. The mass activities of the activated catalysts depend on the initial alloy composition and an activity increase on the order of two to threefold, compared to pure Pt@HGS, is achieved. The key point of the second part is the investigation of the degradation of PtCo@HGS (showing the highest activity). Thanks to pore confinement, the impact of dissolution/dealloying and carbon corrosion can be studied without the interplay of other degradation mechanisms that would induce a substantial change in the particle size distribution. Therefore, impact of the upper potential limit and the scan rates on the dealloying and electrochemical surface area evolution can be examined in detail. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 24
    The shear instability energy: A new parameter for materials design?
    Kanani, M. and Hartmaier, A. and Janisch, R.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING. Volume: 25 (2017)
    view abstract10.1088/1361-651X/aa865a

    Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy. © 2017 IOP Publishing Ltd.

  • 2017 • 23
    Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis
    Song, H. and Laudenschleger, D. and Carey, J.J. and Ruland, H. and Nolan, M. and Muhler, M.
    ACS CATALYSIS. Volume: 7 (2017)
    view abstract10.1021/acscatal.7b01822

    A series of ZnO/Cr2O3 catalysts with different Zn:Cr ratios was prepared by coprecipitation at a constant pH of 7 and applied in methanol synthesis at 260-300 °C and 60 bar. The X-ray diffraction (XRD) results showed that the calcined catalysts with ratios from 65:35 to 55:45 consist of ZnCr2O4 spinel with a low degree of crystallinity. For catalysts with Zn:Cr ratios smaller than 1, the formation of chromates was observed in agreement with temperature-programmed reduction results. Raman and XRD results did not provide evidence for the presence of segregated ZnO, indicating the existence of Zn-rich nonstoichiometric Zn-Cr spinel in the calcined catalyst. The catalyst with Zn:Cr = 65:35 exhibits the best performance in methanol synthesis. The Zn:Cr ratio of this catalyst corresponds to that of the Zn4Cr2(OH)12CO3 precursor with hydrotalcite-like structure obtained by coprecipitation, which is converted during calcination into a nonstoichiometric Zn-Cr spinel with an optimum amount of oxygen vacancies resulting in high activity in methanol synthesis. Density functional theory calculations are used to examine the formation of oxygen vacancies and to measure the reducibility of the methanol synthesis catalysts. Doping Cr into bulk and the (10-10) surface of ZnO does not enhance the reducibility of ZnO, confirming that Cr:ZnO cannot be the active phase. The (100) surface of the ZnCr2O4 spinel has a favorable oxygen vacancy formation energy of 1.58 eV. Doping this surface with excess Zn charge-balanced by oxygen vacancies to give a 60% Zn content yields a catalyst composed of an amorphous ZnO layer supported on the spinel with high reducibility, confirming this as the active phase for the methanol synthesis catalyst. © 2017 American Chemical Society.

  • 2017 • 22
    A novel type of Co–Ti–Cr-base γ/γ′ superalloys with low mass density
    Zenk, C.H. and Povstugar, I. and Li, R. and Rinaldi, F. and Neumeier, S. and Raabe, D. and Göken, M.
    ACTA MATERIALIA. Volume: 135 (2017)
    view abstract10.1016/j.actamat.2017.06.024

    A γ′ strengthened Co–Ti–Cr superalloy is presented with a mass density ∼14 % below that of typical Co–Al–W-based alloys. The lattice misfit is sufficiently low to form coherent cuboidal γ′ precipitates. Atom probe tomography shows that Cr partitions to the γ phase, but increases the γ′ volume fraction compared to a binary Co-Ti alloy to more than 60 %. The solubility of Cr in the γ′ phase is significantly higher than expected from previously published values. The γ′ solvus temperature is above 1100 °C. The yield strength shows a distinct increase above 600 °C surpassing that of Co–9Al–8W (at.%) and conventional Co-base superalloys, even more so when it is normalized by the mass density. © 2017 Acta Materialia Inc.

  • 2015 • 21
    Structural stability of Fe-based topologically close-packed phases
    Ladines, A.N. and Hammerschmidt, T. and Drautz, R.
    INTERMETALLICS. Volume: 59 (2015)
    view abstract10.1016/j.intermet.2014.12.009

    Precipitates of topologically close-packed (TCP) phases play an important role in hardening mechanisms of high-performance steels. We analyze the influence of atomic size, electron count, magnetism and external stress on TCP phase stability in Fe-based binary transition metal alloys. Our density-functional theory calculations of structural stability are complemented by an analysis with an empirical structure map for TCP phases. The structural stability and lattice parameters of the Fe-Nb/Mo/V compounds are in good agreement with experiment. The average magnetic moments follow the Slater-Pauling relation to the average number of valence-electrons and can be rationalized in terms of the electronic density of states. The stabilizing effect of the magnetic energy, estimated by additional non-magnetic calculations, increases as the magnetic moment increases with band filling for the binary systems of Fe and early transition metals. For the case of Fe2Nb, we demonstrate that the influence of magnetism and external stress is sufficiently large to alter the energetic ordering of the closely competing Laves phases C14, C15 and C36. We find that the A15 phase is not stabilized by atomic-size differences, while the stability of C14 is increasing with increasing difference in atomic size. © 2014 Elsevier Ltd. All rights reserved.

  • 2015 • 20
    On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni-Ti-based shape memory alloys
    Jaeger, S. and Maaß, B. and Frenzel, J. and Schmidt, M. and Ullrich, J. and Seelecke, S. and Schütze, A. and Kastner, O. and Eggeler, G.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH. Volume: 106 (2015)
    view abstract10.3139/146.111284

    It is well known that a good crystallographic compatibility between austenite and martensite in Ni-Ti-based shape memory alloys results in narrow thermal hystereses (e. g. Ball and James, Arch. Ration. Mech. Anal., 1987). The present work suggests that a good crystallographic fit is moreover associated with a small mechanical hysteresis width, observed during a forward and reverse stress-induced transformation. Furthermore, shape memory alloys with a good crystallographic fit show smaller transformation strains. The results obtained in the present study suggest that these correlations are generic and apply to binary Ni-Ti (with varying Ni contents) and quaternary Ni-Ti-Cu-X (X = Cr, Fe, V) alloys. For binary Ni-Ti, it was observed that Ni-rich compositions (good lattice fit) show a lower accummulation of irreversible strains during pseudoelastic cycling. © Carl Hanser Verlag GmbH & Co. KG.

  • 2015 • 19
    The crystallographic template effect assisting the formation of stable α-Al2O3 during low temperature oxidation of Fe-Al alloys
    Brito, P. and Pinto, H. and Kostka, A.
    CORROSION SCIENCE. Volume: (2015)
    view abstract10.1016/j.corsci.2016.01.007

    The role of thermally grown α-Fe2O3 on the nucleation of α-Al2O3 during oxidation of binary Fe-Al alloys with 15 and 26 at.%Al at 700°C was investigated. Surface morphology of the oxide scales indicated direct nucleation of α-Al2O3 preferentially instead of conversion from metastable Al2O3 polymorphs. Oxide scale development over time was also monitored by use of synchrotron X-ray diffraction and Raman spectroscopy. The results showed that the α-Fe2O3 crystal lattice decreases in volume as oxidation progresses, which was found to be consistent with an Al3+ enrichment of α-Fe2O3 as confirmed by the change in relative intensity of α-Fe2O3 Raman peaks. © 2016 Elsevier Ltd.

  • 2015 • 18
    Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses
    Ma, D. and Friák, M. and Von Pezold, J. and Neugebauer, J. and Raabe, D.
    ACTA MATERIALIA. Volume: 98 (2015)
    view abstract10.1016/j.actamat.2015.07.054

    Abstract We identify and analyze general trends governing solid solution strengthening in binary alloys containing solutes across the Periodic table using quantum-mechanical calculations. Here we present calculations for the model system of Al binary solid solutions. The identified trends originate from an approximately parabolic dependence of two strengthening parameters to quantitatively predict the solid solution strengthening effect, i.e. the volume and slip misfit parameters. The volume misfit parameter shows a minimum (concave-up behavior) as a function of the solute element group number in the periodic table, whereas the slip misfit parameter shows a maximum (concave-down behavior). By analyzing reported data, a similar trend is also found in Ni and Mg (basal slip) binary systems. Hence, these two strengthening parameters are strongly anti-correlated, which can be understood in terms of the Fermi level shift in the framework of free electron model. The chemical trends identified in this study enable a rapid and efficient identification of the solutes that provide optimum solid-solution strengthening. The approach described here may thus serve as basis for ab initio guided metallurgical materials design. © 2015 Acta Materialia Inc.

  • 2015 • 17
    Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation
    Zhang, L. and Stratmann, M. and Du, Y. and Sundman, B. and Steinbach, I.
    ACTA MATERIALIA. Volume: 88 (2015)
    view abstract10.1016/j.actamat.2014.11.037

    A new approach to incorporate the sublattice models in the CALPHAD (CALculation of PHAse Diagram) formalism directly into the phase-field formalism is developed. In binary alloys, the sublattice models can be classified into two types (i.e., "Type I" and "Type II"), depending on whether a direct one-to-one relation between the element site fraction in the CALPHAD database and the phase concentration in the phase-field model exists (Type I), or not (Type II). For "Type II" sublattice models, the specific site fractions, corresponding to a given mole fraction, have to be established via internal relaxation between different sublattices. Internal minimization of sublattice occupancy and solute evolution during microstructure transformation leads, in general, to a solution superior to the separate solution of the individual problems. The present coupling technique is validated for Fe-C and Ni-Al alloys. Finally, the model is extended into multicomponent alloys and applied to simulate the nucleation process of VC monocarbide from austenite matrix in a steel containing vanadium. © 2014 Acta Materialia Inc.

  • 2015 • 16
    Rapid theory-guided prototyping of ductile Mg alloys: From binary to multi-component materials
    Pei, Z. and Friák, M. and Sandlöbes, S. and Nazarov, R. and Svendsen, B. and Raabe, D. and Neugebauer, J.
    NEW JOURNAL OF PHYSICS. Volume: 17 (2015)
    view abstract10.1088/1367-2630/17/9/093009

    In order to identify a method allowing for a fast solute assessment without lengthy ab initio calculations, we analyze correlations and anti-correlation between the stacking fault energies (SFEs), which were shown to be related to the macroscopic ductility in Mg alloys, and five material parameters of 18 different elemental solutes. Our analysis reveals that the atomic volume V of pure solutes, their electronegativity ν and bulk modulus B are either linearly or logarithmically related to the SFE. Comparing the impact of solutes with that of yttrium (that increases the ductility in Mg) we propose a single numerical quantity (called yttrium similarity index, YSI) that is based on these inter-relations. Subsequently, we evaluate this new figure of merit for 76 elements from the periodic table of elements in search for solutes reducing the SFE. Limiting ourselves first to binary Mg alloys, we hardly find any alternative solutes providing similar reduction as that due to rare-earth (RE) additions. Therefore, we extended our search to ternary Mg alloys. Assuming that the physical properties of solute combinations can be represented by their average values, 2850 solute combinations were checked and 133 solute pairs (not including any RE elements) have been found to have a YSI larger than 0.85. Quantum-mechanical calculations have been subsequently performed for 11 solute pairs with YSIs higher than 0.95 and they were all found to reduce the in excellent agreement with the predictions based on the YSI. © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

  • 2014 • 15
    Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
    Wu, Z. and Bei, H. and Otto, F. and Pharr, G.M. and George, E.P.
    INTERMETALLICS. Volume: 46 (2014)
    view abstract10.1016/j.intermet.2013.10.024

    The equiatomic high-entropy alloy FeNiCoCrMn is known to crystallize as a single phase with the face-centered cubic (FCC) crystal structure. To better understand this quinary solid solution alloy, we investigate various binary, ternary and quaternary alloys made from its constituent elements. Our goals are twofold: (i) to investigate which of these lower order systems also form solid solution alloys consisting of a single FCC phase, and (ii) to characterize their phase stability and recovery, recrystallization, and grain growth behaviors. X-ray diffraction (XRD) and scanning electron microscopy with backscattered electron images showed that three of the five possible quaternaries (FeNiCoCr, FeNiCoMn and NiCoCrMn), five of the ten possible ternaries (FeNiCo, FeNiCr, FeNiMn, NiCoCr, and NiCoMn), and two of the ten possible binaries (FeNi and NiCo) were single-phase FCC solid solutions in the cast and homogenized condition, whereas the others either had different crystal structures or were multi-phase. The single-phase FCC quaternary, FeNiCoCr, along with its equiatomic ternary and binary subsidiaries, were selected for further investigations of phase stability and the thermomechanical processing needed to obtain equiaxed grain structures. Only four of these subsidiary alloys - two binaries (FeNi and NiCo) and two ternaries (FeNiCo and NiCoCr) - were found to be single-phase FCC after rolling at room temperature followed by annealing for 1 h at temperatures of 300-1100 C. Pure Ni, which is FCC and one of the constituents of the quinary high-entropy alloy (FeNiCoCrMn), was also investigated for comparison with the higher order alloys. Among the materials investigated after thermomechanical processing (FeNiCoCr, FeNiCo, NiCoCr, FeNi, NiCo, and Ni), FeNiCo and Ni showed abnormal grain growth at relatively low annealing temperatures, while the other four showed normal grain growth behavior. The grain growth exponents for all five of the equiatomic alloys were found to be ∼0.25 (compared to ∼0.5 for unalloyed Ni), suggesting that solute drag may control grain growth in the alloys. For all five alloys, as well as for pure Ni, microhardness increases as the grain size decreases in a Hall-Petch type way. The ternary alloy NiCoCr was the hardest of the alloys investigated in this study, even when compared to the quaternary FeNiCoCr alloy. This suggests that solute hardening in equiatomic alloys depends not just on the number of alloying elements but also their type. © 2013 Elsevier Ltd. All rights reserved.

  • 2014 • 14
    The thermodynamic assessment of the Au-In-Ga system
    Ghasemi, M. and Sundman, B. and Fries, S.G. and Johansson, J.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 600 (2014)
    view abstract10.1016/j.jallcom.2014.02.071

    The Au-In-Ga ternary phase diagram is of importance for understanding the involved thermodynamic processes during the growth of Au-seeded III-V heterostructure nanowires containing In and Ga (e.g. Au-seeded InAs/GaAs nanowires). In this work the Au-In-Ga system has been thermodynamically modeled using the CALPHAD technique based on a recent experimental investigation of the phase equilibria in the system. As a result, a set of self-consistent interaction parameters have been optimized that can reproduce most of the experimental results. © 2014 Elsevier B.V. All rights reserved.

  • 2014 • 13
    Modelling of dendritic growth during alloy solidification under natural convection
    Zhu, M. and Sun, D. and Pan, S. and Zhang, Q. and Raabe, D.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING. Volume: 22 (2014)
    view abstract10.1088/0965-0393/22/3/034006

    A two-dimensional (2D) lattice Boltzmann method (LBM)-cellular automaton model is presented to investigate the dendritic growth of binary alloys in the presence of natural convection. The kinetic-based LBM is adopted to calculate the transport phenomena by the evolution of distribution functions of moving pseudo-particles. To numerically solve natural convection thermal and solute transport simultaneously, three sets of distribution functions are employed in conjunction with the lattice Bhatnagar-Gross-Krook scheme. Based on the LBM calculated local temperature and concentration at the solid/liquid interface, the kinetics of dendritic growth is determined according to a local solute equilibrium approach. Thus, the physics of a complete time-dependent interaction of natural convection, thermal and solutal transport, and dendritic growth during alloy solidification is embedded in the model. Model validation is performed by comparing the simulated results with literature data and analytical predictions. The model is applied to simulate dendritic growth in binary alloys under the influence of natural convection. The effects of Rayleigh numbers and initial undercooling on dendrite growth are investigated. The results show that natural buoyancy flow, induced by thermal and solutal gradients under gravity, transports the heat and solute from the lower region to the upper region. The dendritic growth is thus accelerated in the downward direction, whereas it is inhibited in the upward direction, yielding asymmetrical dendrite patterns. Increasing the Rayleigh number and undercooling will enhance and reduce, respectively, the influence of natural flow on the dendritic growth. © 2014 IOP Publishing Ltd.

  • 2014 • 12
    On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys - A new concept for fatigue life extension
    Niendorf, T. and Krooß, P. and Batyrsina, E. and Paulsen, A. and Frenzel, J. and Eggeler, G. and Maier, H.J.
    FUNCTIONAL MATERIALS LETTERS. Volume: 7 (2014)
    view abstract10.1142/S1793604714500428

    High-temperature shape memory alloys are promising candidates for actuator applications at elevated temperatures. Ternary nickel-titanium-based alloys either contain noble metals which are very expensive, or suffer from poor workability. Titanium-tantalum shape memory alloys represent a promising alternative if one can avoid the cyclic degradation due to the formation of the omega phase. The current study investigates the functional fatigue behavior of Ti-Ta and introduces a new concept providing for pronounced fatigue life extension. © 2014 The Authors.

  • 2014 • 11
    Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System
    Tasan, C.C. and Deng, Y. and Pradeep, K.G. and Yao, M.J. and Springer, H. and Raabe, D.
    JOM. Volume: 66 (2014)
    view abstract10.1007/s11837-014-1133-6

    The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength–ductility combinations at reduced alloying costs. © 2014, The Minerals, Metals & Materials Society.

  • 2014 • 10
    Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys
    Kassab, E. and Neelakantan, L. and Frotscher, M. and Swaminathan, S. and Maaß, B. and Rohwerder, M. and Gomes, J. and Eggeler, G.
    MATERIALS AND CORROSION. Volume: 65 (2014)
    view abstract10.1002/maco.201206587

    The goal of this study is to compare the corrosion behaviour of selected ternary nickel titanium (NiTi)-based alloys (Ni45Ti 50Cu5, Ni47Ti50Fe3 and Ni39Ti50Pd11) with a binary, pseudoelastic Ni50.7Ti49.3 alloy. We examine the influence of the ternary elements on the corrosion behaviour using standard electrochemical techniques. All measurements were done in a physiological solution (0.9% NaCl) simulating a body temperature of 37 ± 1 °C. The influence of Cu and Pd addition on the surface oxide film was characterised by X-ray photoelectron spectroscopy (XPS). The results revealed that, the localised corrosion resistance of these ternary alloys is lower than the binary NiTi alloy. By comparing the different NiTi-based alloys, the following relation has been proposed for their localised corrosion resistances: NiTiCu < NiTiFe < NiTiPd < NiTi. Depth profiling by XPS showed that the surface oxide film on all the investigated NiTi-based alloys is mainly of TiO2, however, the NiTiPd and NiTiCu alloys showed metallic ternary element distributed within TiO2 layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2013 • 9
    The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
    Otto, F. and Dlouhý, A. and Somsen, C. and Bei, H. and Eggeler, G. and George, E.P.
    ACTA MATERIALIA. Volume: 61 (2013)
    view abstract10.1016/j.actamat.2013.06.018

    An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (fcc) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4-160 μm. Quasi-static tensile tests at an engineering strain rate of 10-3 s-1 were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and elongation to fracture all increased with decreasing temperature. During the initial stages of plasticity (up to ∼2% strain), deformation occurs by planar dislocation glide on the normal fcc slip system, {1 1 1}〈1 1 0〉, at all the temperatures and grain sizes investigated. Undissociated 1/2〈1 1 0〉 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6〈1 1 2〉 Shockley partials. At later stages (∼20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature, where plasticity occurred exclusively by the aforementioned dislocations which organized into cells. Deformation twinning, by continually introducing new interfaces and decreasing the mean free path of dislocations during tensile testing ("dynamic Hall-Petch"), produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second reason is that twinning can provide an additional deformation mode to accommodate plasticity. However, twinning cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since it was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary fcc solid solution alloys, it may be an inherent solute effect, which needs further study. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 2013 • 8
    Atomic engineering of platinum alloy surfaces
    Li, T. and Bagot, P.A.J. and Marquis, E.A. and Edman Tsang, S.C. and Smith, G.D.W.
    ULTRAMICROSCOPY. Volume: 132 (2013)
    view abstract10.1016/j.ultramic.2012.10.012

    A major practical challenge in heterogeneous catalysis is to minimize the loading of expensive platinum group metals (PGMs) without degrading the overall catalytic efficiency. Gaining a thorough atomic-scale understanding of the chemical/structural changes occurring during catalyst manufacture/operation could potentially enable the design and production of "nano-engineered" catalysts, optimized for cost, stability and performance. In the present study, the oxidation behavior of a Pt-31 at% Pd alloy between 673-1073. K is investigated using atom probe tomography (APT). Over this range of temperatures, three markedly different chemical structures are observed near the surface of the alloy. At 673. K, the surface oxide formed is enriched with Pd, the concentration of which rises further following oxidation at 773. K. During oxidation at 873. K, a thick, stable oxide layer is formed on the surface with a stoichiometry of PdO, beneath which a Pd-depleted (Pt-rich) layer exists. Above 873. K, the surface composition switches to enrichment in Pt, with the Pt content increasing further with increasing oxidation temperature. This treatment suggests a route for tuning the surfaces of Pt-Pd nanoparticles to be either Pd-rich or Pt-rich, simply by adjusting the oxidation temperatures in order to form two different types of core-shell structures. In addition, comparison of the oxidation behavior of Pt-Pd with Pt-Rh and Pd-Rh alloys demonstrates markedly different trends under the same conditions for these three binary alloys. © 2012.

  • 2012 • 7
    Combinatorial development of nanoporous WO 3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys
    Stepanovich, A. and Sliozberg, K. and Schuhmann, W. and Ludwig, Al.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. Volume: 37 (2012)
    view abstract10.1016/j.ijhydene.2012.05.039

    A combinatorial materials approach is suggested for the development of nanoporous thin film oxides for photoelectrochemical solar water splitting. As a precursor for nanoporous WO 3 films, metallic nanoporous W films were synthesized by dealloying sputtered W 1-xAl x and W 1-xFe x (0.06 < x < 0.67) thin film materials libraries in aqueous HNO 3 solutions with different concentrations for 24 h under open circuit conditions. The variation of the etchant concentration provided different film nanostructures. The films were then transformed into nanoporous WO 3 by controlled thermal oxidation at 500 °C in air. Screening of the photoelectrochemical properties of nanoporous WO 3 films shows a strong porosity- and thickness-dependence of the photocurrent. At the same time the photocurrent density does not depend on precursor composition, because dealloying in acid solutions of certain concentration leads to formation of identical nanostructures in a broad range of precursor compositions. ©, 2012 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  • 2011 • 6
    TCP phase predictions in Ni-based superalloys: Structure maps revisited
    Seiser, B. and Drautz, R. and Pettifor, D.G.
    ACTA MATERIALIA. Volume: 59 (2011)
    view abstract10.1016/j.actamat.2010.10.013

    The traditional methods for predicting the occurrence of deleterious topologically close-packed (TCP) phases in Ni-based superalloys have been based on the PHACOMP and newPHACOMP methodologies. These schemes use the average number of holes Nh or the centre of gravity of the elemental d-bands Md to predict whether or not a given multicomponent alloy will be prone to TCP formation. However, as both these one-dimensional methodologies are well-known to fail with respect to new generations of alloys, a novel two-dimensional structure map (N,ΔV/V) is introduced where N is the average electron concentration and ΔV/V is a composition-dependent size-factor difference. This map is found to separate the experimental data on the TCP phases of binary A-B transition metal alloys into well-defined but sometimes overlapping regions corresponding to different structure types such as A15, σ, χ, R, P, δ, μ, M and Laves. Detailed investigations of ternary phase diagrams and multicomponent systems show that TCP phases, regardless of the number of constituents, are located in the same regions of the structure map that are favoured by the binary compounds of the same structure type. The structure map is then used in conjunction with CALPHAD computations of σ phase stability to show that the predictive power of newPHACOMP for the seven component Ni-Co-Cr-Ta-W-Re-Al system studied recently by Reed et al. [24] is indeed poor. This supports a growing consensus that robust methods of TCP phase prediction in multicomponent alloys will require the inclusion of reliable first-principles thermodynamic databases within the semi-empirical CALPHAD scheme. © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 2011 • 5
    On the stress-induced formation of R-phase in ultra-fine-grained Ni-rich NiTi shape memory alloys
    Olbricht, J. and Yawny, A. and Pelegrina, J.L. and Dlouhy, A. and Eggeler, G.
    METALLURGICAL AND MATERIALS TRANSACTIONS A: PHYSICAL METALLURGY AND MATERIALS SCIENCE. Volume: 42 (2011)
    view abstract10.1007/s11661-011-0679-y

    Phase transformations in binary ultra-fine-grained (UFG) pseudoelastic NiTi wires were studied in a wide temperature range using mechanical loading/unloading experiments, resistance measurements, differential scanning calorimetry (DSC), thermal infrared imaging, and transmission electron microscopy (TEM). The formation of R-phase can be detected in the mechanical experiments. It is shown that the stress-strain response of the R-phase can be isolated from the overall stress-strain data. The R-phase always forms prior to B19' when good pseudoelastic properties are observed. The stress-induced B2 to R-phase transition occurs in a homogeneous manner, contrary to the localized character of the B2/R to B19' transformations. The temperature dependence of the critical stress values for the formation of the martensitic phases shows a Clausius Clapeyron type of behavior with constants close to 6 MPa/K (B19') and 18 MPa/K (R-phase). A stress-temperature map is suggested that summarizes the experimentally observed sequences of elementary transformation/deformation processes. © The Minerals, Metals & Materials Society and ASM International 2011.

  • 2011 • 4
    Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations
    Kastner, O. and Eggeler, G. and Weiss, W. and Ackland, G.J.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. Volume: 59 (2011)
    view abstract10.1016/j.jmps.2011.05.009

    Shape memory alloys (SMA) exhibit a number of features which are not easily explained by equilibrium thermodynamics, including hysteresis in the phase transformation and reverse shape memory in the high symmetry phase. Processing can change these features: repeated cycling can train the reverse shape memory effect, while changing the amount of hysteresis and other functional properties. These effects are likely to be due to formations of localised defects and these can be studied by atomistic methods. Here we present a molecular dynamics simulation study of such behaviour employing a two-dimensional, binary LennardJones model. Our atomistic model exhibits a symmetry breaking, displacive phase transition from a high temperature, entropically stabilised, austenite-like phase to a low temperature martensite-like phase. The simulations show transformations in this model material proceed by non-diffusive nucleation and growth processes and produce distinct microstructures. We observe the generation of persistent lattice defects during forward-and-reverse transformations which serve as nucleation centres in subsequent transformation processes. These defects interfere the temporal and spatial progression of transformations and thereby affect subsequent product morphologies. During cyclic transformations we observe accumulations of lattice defects so as to establish new microstructural elements which represent a memory of the previous morphologies. These new elements are self-organised and they provide a basis of the reversible shape memory effect in the model material. © 2011 Elsevier Ltd.

  • 2011 • 3
    High-energy X-ray diffraction studies of i-Sc12Zn88
    Goldman, A.I. and Kreyssig, A. and Nandi, S. and Kim, M.G. and Caudle, M.L. and Canfield, P.C.
    PHILOSOPHICAL MAGAZINE. Volume: 91 (2011)
    view abstract10.1080/14786435.2010.511599

    Although quasicrystals form in a wide variety of ternary and quaternary metallic alloys, examples of stable binary icosahedral quasicrystals are quite rare. Indeed, it has been a decade since the discovery of icosahedral phases in Yb-Cd and Ca-Cd. We have discovered millimeter-sized facetted grains of i- Sc12Zn88 with icosahedral (pentagonal dodecahedral and rhombic triacontahedral) morphologies in solution-grown samples. Structural characterization of the bulk icosahedral phase was accomplished through single-grain high-energy X-ray diffraction. For both growth morphologies, all diffraction peaks could be indexed by a primitive (P-type) icosahedral phase. The two types of morphology do, however, present interesting differences in their respective degrees of quasicrystalline order. © 2011 Taylor & Francis.

  • 2011 • 2
    Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: A comparison
    Frotscher, M. and Kahleyss, F. and Simon, T. and Biermann, D. and Eggeler, G.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE. Volume: 20 (2011)
    view abstract10.1007/s11665-010-9789-8

    NiTi shape memory alloys (SMA) are used for a variety of applications including medical implants and tools as well as actuators, making use of their unique properties. However, due to the hardness and strength, in combination with the high elasticity of the material, the machining of components can be challenging. The most common machining techniques used today are laser cutting and electrical discharge machining (EDM). In this study, we report on the machining of small structures into binary NiTi sheets, applying alternative processing methods being well-established for other metallic materials. Our results indicate that water jet machining and micro milling can be used to machine delicate structures, even in very thin NiTi sheets. Further work is required to optimize the cut quality and the machining speed in order to increase the cost-effectiveness and to make both methods more competitive. © ASM International.

  • 2010 • 1
    L21-ordered Fe-Al-Ti alloys
    Krein, R. and Friak, M. and Neugebauer, J. and Palm, M. and Heilmaier, M.
    INTERMETALLICS. Volume: 18 (2010)
    view abstract10.1016/j.intermet.2009.12.036

    Fe-Al-Ti alloys with the ordered L21-structure (Heusler phase) belong to the few Fe-Al-based alloys which show comparably high-strength at high temperatures, e.g. at 800 °C. However, like many other high-temperature materials based on intermetallics they show limited ductility even at high temperatures. In order to further explore the possibilities in increasing their strength and ductility, alloys with four different microstructures, i.e. single-phase L21, L21 with incoherent precipitates of TiB2 or Laves phase, and coherent L21 + A2, were produced. Also, the influence of alloying with Cr and B has been investigated. The Young's modulus of Fe-25Al-20Ti-4Cr (at.%) in dependence of temperature up to 900 °C has been determined and results of the compressive flow stress, creep strength and brittle-toductile transition temperatures (BDTT) are summarised and compared to those of binary Fe3Al (D03), Fe-Al-Ti-based alloys, and some commercial alloys. © 2010 Elsevier Ltd. All rights reserved.

Logo RUB
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

SOCIAL MEDIA

  • LinkedIn
Seitenanfang Kontrast N
  • LinkedIn