Logo RUB
  • Home
  • Members
    • Structure
      • MRD Scientists
      • MRD Speakers
      • MRD Board
      • MRD Alumni
    • Early Career Researchers
      • ECR Scientists
      • ECR Representatives
      • ECR Networking
  • Research
    • Research at MRD
      • Publications
      • Fields of Expertise
      • Research Projects
      • Meet our Researchers
    • Partners
      • ZGH
      • Incubator Materials
      • Materials Chain
      • National Partnerships
      • International Partnerships
  • News & Events
    • News
      • RUB News
      • MRD News
      • Newsletter Archive
    • Events
      • Talks & Seminars
      • Conferences
      • Annual MRD Events
  • Education
    • Studying Materials Science at RUB
      • B.Sc. Study Programs
      • M.Sc. Study Programs
      • Doctoral Programs
    • International Lectures
      • Summer term 2023
      • Winter term 2022/2023
      • Archive – Teaching
  • Contact
 
Materials Research Department
Materials Research Department
MENÜ
  • RUB-STARTSEITE
  • Home
  • Members
    • Structure
    • Early Career Researchers
  • Research
    • Research at MRD
    • Partners
  • News & Events
    • News
    • Events
  • Education
    • Studying Materials Science at RUB
    • International Lectures
  • Contact
Home » Research » Research at MRD » Publications

- Ruhr-Universität Bochum

Scientific output

Publications

Over 7.000 scientific papers have been published by members of the MRD since the foundation of the MRD in 2009. This tremendous output is proof of the excellent research acieved in an interdisciplinary environment.

 

Below, you can either scroll through the complete list of our annually published research in peer-reviewed journals or search for a specific author or keyword via the free text search.

Interactive keyword cloud:

  • aluminum
  • atoms
  • binary alloys
  • carbon
  • catalysis
  • catalysts
  • chemistry
  • copper
  • deformation
  • density functional theory
  • deposition
  • electrochemistry
  • electrodes
  • grain boundaries
  • high resolution transmission electron microscopy
  • hydrogen
  • manganese
  • mechanical properties
  • microstructure
  • molecular dynamics
  • nanoparticles
  • nickel
  • oxidation
  • oxygen
  • scanning electron microscopy
  • single crystals
  • temperature
  • thin films
  • transmission electron microscopy
  • x ray diffraction

Filter

  • 2023 • 486
    Evidence of Sulfur Non-Innocence in [CoII(dithiacyclam)]2+-Mediated Catalytic Oxygen Reduction Reactions
    Battistella, B. and Iffland-Mühlhaus, L. and Schütze, M. and Cula, B. and Kuhlmann, U. and Dau, H. and Hildebrandt, P. and Lohmiller, T. and Mebs, S. and Apfel, U.-P. and Ray, K.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 62 (2023)
    10.1002/anie.202214074
  • 2023 • 485
    Catalytic effects of molybdate and chromate–molybdate films deposited on platinum for efficient hydrogen evolution
    Diaz-Morales, O. and Lindberg, A. and Smulders, V. and Anil, A. and Simic, N. and Wildlock, M. and Alvarez, G.S. and Mul, G. and Mei, B. and Cornell, A.
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY. Volume: 98 (2023)
    view abstract10.1002/jctb.7345

    BACKGROUND: Sodium chlorate (NaClO3) is extensively used in the paper industry, but its production uses strictly regulated highly toxic Na2Cr2O7 to reach high hydrogen evolution reaction (HER) Faradaic efficiencies. It is therefore important to find alternatives either to replace Na2Cr2O7 or reduce its concentration. RESULTS: The Na2Cr2O7 concentration can be significantly reduced by using Na2MoO4 as an electrolyte co-additive. Na2MoO4 in the millimolar range shifts the platinum cathode potential to less negative values due to an activating effect of cathodically deposited Mo species. It also acts as a stabilizer of the electrodeposited chromium hydroxide but has a minor effect on the HER Faradaic efficiency. X-ray photoelectron spectroscopy (XPS) results show cathodic deposition of molybdenum of different oxidation states, depending on deposition conditions. Once Na2Cr2O7 was present, molybdenum was not detected by XPS, as it is likely that only trace levels were deposited. Using electrochemical measurements and mass spectrometry we quantitatively monitored H2 and O2 production rates. The results indicate that 3 μmol L−1 Na2Cr2O7 (contrary to current industrial 10–30 mmol L−1) is sufficient to enhance the HER Faradaic efficiency on platinum by 15%, and by co-adding 10 mmol L−1 Na2MoO4 the cathode is activated while avoiding detrimental O2 generation from chemical and electrochemical reactions. Higher concentrations of Na2MoO4 led to increased oxygen production. CONCLUSION: Careful tuning of the molybdate concentration can enhance performance of the chlorate process using chromate in the micromolar range. These insights could be also exploited in the efficient hydrogen generation by photocatalytic water splitting and in the remediation of industrial wastewater. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI). © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

  • 2023 • 484
    Concepts of Heterogeneously Catalyzed Liquid-Phase Oxidation of Cyclohexene with tert-Butyl Hydroperoxide, Hydrogen Peroxide and Molecular Oxygen
    Büker, J. and Muhler, M. and Peng, B.
    CHEMCATCHEM. Volume: 15 (2023)
    10.1002/cctc.202201216
  • 2023 • 483
    Atomic-Scale Insights into Morphological, Structural, and Compositional Evolution of CoOOH during Oxygen Evolution Reaction
    Luan, C. and Corva, M. and Hagemann, U. and Wang, H. and Heidelmann, M. and Tschulik, K. and Li, T.
    ACS CATALYSIS. Volume: 13 (2023)
    10.1021/acscatal.2c03903
  • 2023 • 482
    Crystal Plane-Related Oxygen-Evolution Activity of Single Hexagonal Co3O4 Spinel Particles
    Varhade, S. and Tetteh, E.B. and Saddeler, S. and Schumacher, S. and Aiyappa, H.B. and Bendt, G. and Schulz, S. and Andronescu, C. and Schuhmann, W.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 29 (2023)
    10.1002/chem.202203474
  • 2023 • 481
    Facile Solid-State Synthesis of Supported PtNi and PtCo Bimetallic Nanoparticles for the Oxygen Reduction Reaction
    Gunnarson, A. and De Bellis, J. and Imhof, T. and Pfänder, N. and Ledendecker, M. and Schüth, F.
    CHEMISTRY OF MATERIALS. Volume: 35 (2023)
    10.1021/acs.chemmater.2c03337
  • 2023 • 480
    Scrutinizing Intrinsic Oxygen Reduction Reaction Activity of a Fe−N−C Catalyst via Scanning Electrochemical Cell Microscopy
    Limani, N. and Batsa Tetteh, E. and Kim, M. and Quast, T. and Scorsone, E. and Jousselme, B. and Schuhmann, W. and Cornut, R.
    CHEMELECTROCHEM. Volume: 10 (2023)
    10.1002/celc.202201095
  • 2023 • 479
    Scalable Synthesis of Multi-Metal Electrocatalyst Powders and Electrodes and their Application for Oxygen Evolution and Water Splitting
    Cechanaviciute, I.A. and Antony, R.P. and Krysiak, O.A. and Quast, T. and Dieckhöfer, S. and Saddeler, S. and Telaar, P. and Chen, Y.-T. and Muhler, M. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 62 (2023)
    10.1002/anie.202218493
  • 2023 • 478
    Preferred corrosion pathways for oxygen in Al2Ca – twin boundaries and dislocations
    Peter, N.J. and Zander, D. and Cao, X. and Tian, C. and Zhang, S. and Du, K. and Scheu, C. and Dehm, G.
    JOURNAL OF ALLOYS AND COMPOUNDS. Volume: 936 (2023)
    10.1016/j.jallcom.2022.168296
  • 2022 • 477
    In Situ Carbon Corrosion and Cu Leaching as a Strategy for Boosting Oxygen Evolution Reaction in Multimetal Electrocatalysts
    Zhang, J. and Quast, T. and He, W. and Dieckhöfer, S. and Junqueira, J.R.C. and Öhl, D. and Wilde, P. and Jambrec, D. and Chen, Y.-T. and Schuhmann, W.
    ADVANCED MATERIALS. Volume: (2022)
    view abstract10.1002/adma.202109108

    The number of active sites and their intrinsic activity are key factors in designing high-performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in-depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm−2 and a Tafel slope of 43.9 mV dec−1. It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm−2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single-nanoparticle technique contributes to the development and characterization of high-performance catalysts for electrochemical energy conversion. © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH

  • 2022 • 476
    Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions
    Lei, H. and Zhang, Q. and Liang, Z. and Guo, H. and Wang, Y. and Lv, H. and Li, X. and Zhang, W. and Apfel, U.-P. and Cao, R.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 61 (2022)
    10.1002/anie.202201104
  • 2022 • 475
    Advanced oxidation processes for removal of organics from cooling tower blowdown: Efficiencies and evaluation of chlorinated species
    Saha, P. and Wang, Y. and Moradi, M. and Brüninghoff, R. and Moussavi, G. and Mei, B. and Mul, G. and H. M. Rijnaarts, H. and Bruning, H.
    SEPARATION AND PURIFICATION TECHNOLOGY. Volume: 278 (2022)
    view abstract10.1016/j.seppur.2021.119537

    One of the major challenges in reusing cooling tower blowdown water (CTBD) utilizing membrane processes is its remaining organic compounds, e.g., humic substances leading to biofouling. Besides, the possible abundance of chloride in CTBD imposes the concern of the formation of chlorinated by-products. To choose a pre-treatment process for the studied CTBD composition, various advanced oxidation processes (AOPs), including electrooxidation (EO), photocatalytic degradation (PCD), heat-activated persulfate oxidation (PS), UVC/vacuum UV (UVC/VUV), and UVC processes, were evaluated and compared based on two main targets: i) highest removal and mineralization of the organics, especially humic substances; and ii) lowest formation of chlorinated by-products including adsorbable organic halides and oxychlorides. All the processes were conducted in the natural condition of the real CTBD, while solution pH was monitored. Based on results of chemical oxygen demand, total organic carbon, dissolved organic carbon, UV254 absorbance, liquid-chromatography–organic carbon detection (LC-OCD), and fluorescence excitation-emission matrices (FEEM), it is concluded that PS leads to complete removal of organic compounds along with the lowest formation of low molecular weight organic acids and organic neutrals. FEEM and LC-OCD data also indicated that EO, PCD, and UVC/VUV processes brought about substantial removal of organic compounds and broke down the humic substances into low molecular weight building blocks and organics. Besides, EO exhibited the highest AOX and oxychlorides formation, while these were limited when using the other AOPs. Summarizing, PS, PCD, and UVC/VUV were efficient processes for the degradation and mineralization of organics without generating significant amounts of chlorinated by-products. © 2021 The Author(s)

  • 2022 • 474
    Influence of surface activation on the microporosity of PE-CVD and PE-ALD SiOx thin films on PDMS
    Hoppe, C. and Mitschker, F. and Mai, L. and Liedke, M.O. and de los Arcos, T. and Awakowicz, P. and Devi, A. and Attallah, A.G. and Butterling, M. and Wagner, A. and Grundmeier, G.
    PLASMA PROCESSES AND POLYMERS. Volume: (2022)
    view abstract10.1002/ppap.202100174

    The microporosity, structure and permeability of SiOx thin films deposited by microwave plasma-enhanced chemical vapour deposition (PE-CVD) and plasma-enhanced atomic layer deposition (PE-ALD) on polydimethylsiloxane (PDMS) substrates were investigated by positron annihilation spectroscopy and complementary technique, such as X-ray photoelectron spectroscopy, infrared spectroscopy, time of flight mass spectroscopy and atomic force microscopy. The SiOx films were deposited onto spin-coated PDMS substrates, which were previously exposed to an oxygen plasma thus achieving the conversion of the top polymer layer into SiOx. The presence of this oxidised surface near the region led to an overall decrease in micropore density and to a shift towards smaller pore sizes within the deposited SiOx films. A correlation between the oxygen fluence during the oxygen plasma treatment and the microporosity of the PE-CVD and PE-ALD SiOx films could be established. © 2022 The Authors. Plasma Processes and Polymers published by Wiley-VCH GmbH.

  • 2022 • 473
    Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water
    Shen, Z. and Hu, Y. and Pan, Q. and Huang, C. and Zhu, B. and Xia, W. and Wang, H. and Yue, J. and Muhler, M. and Zhao, G. and Wang, X. and Huang, X.
    APPLIED SURFACE SCIENCE. Volume: 571 (2022)
    view abstract10.1016/j.apsusc.2021.151370

    Selective photocatalytic oxidation of alcohols into value-added aldehydes or ketones is a promising alternative for alcohol oxidation concerning the mild reaction conditions and the controllable selectivity. To increase the activity, defective Bi2WO6 with abundant oxygen vacancies (OVs) was synthesized via substitution of W by Ta. The resulting Ta-doped Bi2WO6 loaded with Pt nanoparticles as co-catalyst efficiently converted aromatic and aliphatic alcohols into the corresponding carbonyl compounds with high selectivity (>99%) in aqueous solution under visible-light irradiation and anaerobic conditions, with equivalent H2 as a coupled product. The optimal amount of benzyl alcohol converted by the Ta-doped catalyst was two times higher than that of the undoped catalyst. Surface OVs were found to favor the dissociative adsorption of the alcohols and to prolong the life time of the charge carriers. More importantly, isotopic labelling experiments confirmed that over Pt-loaded pristine undoped Bi2WO6, the coupled H2 product results from water reduction, while over Pt-loaded Ta-doped Bi2WO6, the produced H2 originates from benzyl alcohol, implying that benzyl alcohol can be photo-oxidized via a complete dehydrogenation pathway. Thus, enriched surface OVs in photocatalysts can activate α-C-H bonds in alcohols, boosting the photocatalytic oxidation performance. © 2021 Elsevier B.V.

  • 2022 • 472
    Non-oxidative Dehydrogenation of Methanol to Formaldehyde over Bulk β-Ga2O3
    Merko, M. and Busser, G.W. and Muhler, M.
    CHEMCATCHEM. Volume: 14 (2022)
    view abstract10.1002/cctc.202200258

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a dream reaction compared with the classical oxidative route, because the valuable coupled product hydrogen is formed instead of water, and the produced anhydrous formaldehyde is highly suitable for the further synthesis of oxygenated synthetic fuels. This study reports on the high catalytic performance of pure β-Ga2O3 in this reaction at temperatures between 500 °C and 650 °C. At 550 °C and a GHSV of 45500 h−1, an initial selectivity to formaldehyde of 77 % was obtained at a methanol conversion of 72 %. Performing the reaction at temperatures beyond this range and lower GHSV resulted in a lower formaldehyde selectivity. The catalyst suffered from deactivation caused by formation of carbon deposits, but it was possible to regenerate its initial activity at 500 °C and 550 °C completely by an oxidative treatment. Irreversible deactivation occurred at 650 °C due to partial volatilization of Ga2O3. © 2022 The Authors. ChemCatChem published by Wiley-VCH GmbH.

  • 2022 • 471
    Application of Design of Experiments for Catalytic Oxygen Removal over Pt/γ-Al2O3 Catalyst
    Suh, S.Y. and Geitner, C. and Hänel, M. and Wiesmann, T. and Watermann, C.M. and Lohmann, H. and Apfel, U.-P. and Zeidler-Fandrich, B.
    CHEMIE-INGENIEUR-TECHNIK. Volume: 94 (2022)
    10.1002/cite.202200035
  • 2022 • 470
    3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction
    Xiang, W. and Yang, N. and Li, X. and Linnemann, J. and Hagemann, U. and Ruediger, O. and Heidelmann, M. and Falk, T. and Aramini, M. and DeBeer, S. and Muhler, M. and Tschulik, K. and Li, T.
    NATURE COMMUNICATIONS. Volume: 13 (2022)
    view abstract10.1038/s41467-021-27788-2

    The three-dimensional (3D) distribution of individual atoms on the surface of catalyst nanoparticles plays a vital role in their activity and stability. Optimising the performance of electrocatalysts requires atomic-scale information, but it is difficult to obtain. Here, we use atom probe tomography to elucidate the 3D structure of 10 nm sized Co2FeO4 and CoFe2O4 nanoparticles during oxygen evolution reaction (OER). We reveal nanoscale spinodal decomposition in pristine Co2FeO4. The interfaces of Co-rich and Fe-rich nanodomains of Co2FeO4 become trapping sites for hydroxyl groups, contributing to a higher OER activity compared to that of CoFe2O4. However, the activity of Co2FeO4 drops considerably due to concurrent irreversible transformation towards CoIVO2 and pronounced Fe dissolution. In contrast, there is negligible elemental redistribution for CoFe2O4 after OER, except for surface structural transformation towards (FeIII, CoIII)2O3. Overall, our study provides a unique 3D compositional distribution of mixed Co-Fe spinel oxides, which gives atomic-scale insights into active sites and the deactivation of electrocatalysts during OER. © 2022, The Author(s).

  • 2022 • 469
    Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction
    Liu, Z. and Amin, H.M.A. and Peng, Y. and Corva, M. and Pentcheva, R. and Tschulik, K.
    ADVANCED FUNCTIONAL MATERIALS. Volume: (2022)
    view abstract10.1002/adfm.202210945

    Deciphering the influence of nanocatalyst morphology on their catalytic activity in the oxygen evolution reaction (OER), the limiting reaction in water splitting process, is essential to develop highly active precious metal-free catalysts, yet poorly understood. The intrinsic OER activity of Co3O4 nanocubes and spheroids is probed at the single particle level to unravel the correlation between exposed facets, (001) vs. (111), and activity. Single cubes with predominant (001) facets show higher activity than multi-faceted spheroids. Density functional theory calculations of different terminations and reaction sites at (001) and (111) surfaces confirm the higher activity of the former, expressed in lower overpotentials. This is rationalized by a change in the active site from octahedral to tetrahedral Co and the potential-determining step from *OH to *O for the cases with lowest overpotentials at the (001) and (111) surfaces, respectively. This approach enables the identification of highly active facets to guide shape-selective syntheses of improved metal oxide nanocatalysts for water oxidation. © 2022 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

  • 2022 • 468
    Interactions of water and short-chain alcohols with CoFe2O4(001) surfaces at low coverages
    Rushiti, A. and Falk, T. and Muhler, M. and Hättig, C.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS. Volume: 24 (2022)
    view abstract10.1039/d2cp02480b

    Iron and cobalt-based oxides crystallizing in the spinel structure are efficient and affordable catalysts for the oxidation of organics, yet, the detailed understanding of their surface structure and reactivity is limited. To fill this gap, we have investigated the (001) surfaces of cobalt ferrite, CoFe2O4, with the A- and B-layer terminations using density functional theory (DFT/PBE0) and an embedded cluster model. We have considered the five-fold coordinated Co2+/3+ (Oh), two-fold coordinated Fe2+ (Td), and an oxygen vacancy, as active sites for the adsorption of water and short-chain alcohols: methanol, ethanol, and 2-propanol, in the low coverage regime. The adsorbates dissociate upon adsorption on the Fe sites whereas the adsorption is mainly molecular on Co. At oxygen vacancies, the adsorbates always dissociate, fill the vacancy and form (partially) hydroxylated surfaces. The computed vibrational spectra for the most stable configurations are compared with results from diffuse reflectance infrared Fourier transform spectroscopy. © 2022 The Royal Society of Chemistry.

  • 2022 • 467
    A cracking oxygen story: A new view of stress corrosion cracking in titanium alloys
    Joseph, S. and Kontis, P. and Chang, Y. and Shi, Y. and Raabe, D. and Gault, B. and Dye, D.
    ACTA MATERIALIA. Volume: 227 (2022)
    view abstract10.1016/j.actamat.2022.117687

    Titanium alloys can suffer from halide-associated stress corrosion cracking at elevated temperatures e.g., in jet engines, where chlorides and Ti-oxide promote the cracking of water vapour in the gas stream, depositing embrittling species at the crack tip. Here we report, using isotopically-labelled experiments, that crack tips in an industrial Ti-6Al-2Sn-4Zr-6Mo alloy are strongly enriched (>5 at.%) in oxygen from the water vapour, far greater than the amounts (0.25 at.%) required to embrittle the material. Surprisingly, relatively little hydrogen (deuterium) is measured, despite careful preparation and analysis. Therefore, we suggest that a combined effect of O and H leads to cracking, with O playing a vital role, since it is well-known to cause embrittlement of the alloy. In contrast it appears that in α + β Ti alloys, it may be that H may drain away into the bulk owing to its high solubility in β-Ti, rather than being retained in the stress field of the crack tip. Therefore, whilst hydrides may form on the fracture surface, hydrogen ingress might not be the only plausible mechanism of embrittlement of the underlying matrix. This possibility challenges decades of understanding of stress-corrosion cracking as being related solely to the hydrogen enhanced localised plasticity (HELP) mechanism, which explains why H-doped Ti alloys are embrittled. This would change the perspective on stress corrosion embrittlement away from a focus purely on hydrogen to also consider the ingress of O originating from the water vapour, insights critical for designing corrosion resistant materials. © 2022 Acta Materialia Inc.

  • 2022 • 466
    Structure-Performance Relationship of LaFe1-xCoxO3 Electrocatalysts for Oxygen Evolution, Isopropanol Oxidation, and Glycerol Oxidation
    Brix, A.C. and Dreyer, M. and Koul, A. and Krebs, M. and Rabe, A. and Hagemann, U. and Varhade, S. and Andronescu, C. and Behrens, M. and Schuhmann, W. and Morales, D.M.
    CHEMELECTROCHEM. Volume: 9 (2022)
    view abstract10.1002/celc.202200092

    Mitigating high energy costs related to sustainable H2 production via water electrolysis is important to make this process commercially viable. Possible approaches are the investigation of low-cost, highly active oxygen evolution reaction (OER) catalysts and the exploration of alternative anode reactions, such as the electrocatalytic isopropanol oxidation reaction (iPOR) or the glycerol oxidation reaction (GOR), offering the possibility of simultaneously lowering the anodic overpotential and generating value-added products. A suitable class of catalysts are non-noble metal-based perovskites with the general formula ABO3, featuring rare-earth metal cations at the A- and transition metals at the B-site. We synthesised a series of LaFe1-xCoxO3 materials with x=0–0.70 by automated co-precipitation at constant pH and subsequent calcination at 800 °C. X-ray diffraction studies revealed that the phase purity was preserved in samples with x≤0.3. The activity towards the OER, iPOR, and GOR was investigated by rotating disk electrode voltammetry, showing a relation between structure and metal composition with the activity trends observed for the three reactions. Additionally, GOR product analysis via high-performance liquid chromatography (HPLC) was conducted after 24 and 48 h electrolysis in a circular flow-through cell setup, pointing out a trade-off between activity and selectivity. © 2022 The Authors. ChemElectroChem published by Wiley-VCH GmbH

  • 2022 • 465
    Thermicity of the Decomposition of Oxygen Functional Groups on Cellulose-Derived Chars
    Pflieger, C. and Eckhard, T. and Schmitz, G. and Angenent, V. and Göckeler, M. and Senneca, O. and Schmid, R. and Cerciello, F. and Muhler, M.
    ACS OMEGA. Volume: 7 (2022)
    10.1021/acsomega.2c07429
  • 2022 • 464
    Aerosol-Based Synthesis of Multi-metal Electrocatalysts for Oxygen Evolution and Glycerol Oxidation
    Cechanaviciute, I.A. and Bobrowski, T. and Jambrec, D. and Krysiak, O.A. and Brix, A.C. and Braun, M. and Quast, T. and Wilde, P. and Morales, D.M. and Andronescu, C. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 9 (2022)
    10.1002/celc.202200107
  • 2022 • 463
    Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction
    Zanders, D. and Obenlüneschloß, J. and Wree, J.-L. and Jagosz, J. and Kaur, P. and Boysen, N. and Rogalla, D. and Kostka, A. and Bock, C. and Öhl, D. and Gock, M. and Schuhmann, W. and Devi, A.
    ADVANCED MATERIALS INTERFACES. Volume: (2022)
    10.1002/admi.202201709
  • 2022 • 462
    Optical absorption spectroscopy of reactive oxygen and nitrogen species in a surface dielectric barrier discharge
    Schücke, L. and Bodnar, A. and Friedrichs, N. and Böddecker, A. and Peters, N. and Ollegott, K. and Oberste-Beulmann, C. and Wirth, P. and Nguyen-Smith, R.T. and Korolov, I. and Gibson, A.R. and Muhler, M. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 55 (2022)
    view abstract10.1088/1361-6463/ac5661

    A twin surface dielectric barrier discharge (SDBD) ignited in a dry synthetic air gas stream is studied regarding the formation of reactive oxygen and nitrogen species (RONS) and their impact on the conversion of admixed n-butane. The discharge is driven by a damped sinusoidal voltage waveform at peak-to-peak amplitudes of 8 kVpp-13 kVpp and pulse repetition frequencies of 250 Hz-4000 Hz. Absolute densities of O3, NO2, NO3, as well as estimates of the sum of the densities of N2O4 and N2O5 are determined temporally resolved by means of optical absorption spectroscopy using a laser driven broadband light source, suitable interference filters, and a photodiode detector. The measured densities are acquired across the center of the reactor chamber as well as at the outlet of the chamber. The temporal and spatial evolution of the species' densities is correlated to the conversion of n-butane at concentrations of 50 ppm and 400 ppm, measured by means of flame ionization detectors. The n-butane is admixed either before or after the reactor chamber, in order to separate the impact of short- and long-lived reactive species on the conversion process. It is found that, despite the stationary conversion at the selected operating points, at higher voltages and repetition frequencies the densities of the measured species are not in steady state. Based on the produced results it is presumed that the presence of n-butane modifies the formation and consumption pathways of O3. At the same time, there is no significant impact on the formation of dinitrogen oxides (N2O4 and N2O5). Furthermore, a comparatively high conversion of n-butane, when admixed at the outlet of the reactor chamber is observed. These findings are discussed together with known rate coefficients for the reactions of n-butane with selected RONS. © 2022 The Author(s). Published by IOP Publishing Ltd

  • 2021 • 461
    Recovering activity of anodically challenged oxygen reduction electrocatalysts by means of reductive potential pulses
    Medina, D. and Löffler, T. and Morales, D.M. and Masa, J. and Bobrowski, T. and Barwe, S. and Andronescu, C. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 124 (2021)
    view abstract10.1016/j.elecom.2021.106960

    The stability of electrocatalysts is of great importance to ensure their applicability, but stability is generally only considered for catalysts polarised to a constant potential or current density. This excludes stability evaluation under start/stop conditions in a fuel cell or in reversible batteries in which the catalyst is alternately polarised to high opposite potentials. For example, the poor cyclability of metal-air batteries is mainly due to the decrease in the oxygen reduction activity of electrocatalysts during the high applied potentials for the oxygen evolution reaction during battery charging. To investigate and at least partially mitigate the loss of electrocatalytic activity for the oxygen reduction reaction, we employed reductive pulses with the aim of restoring the catalytic activity of the active sites for the oxygen reduction reaction. Optimisation of the reductive pulse parameters makes it possible to substantially prolong the oxygen reduction activity of a Fe-Nx-doped carbon-based oxygen reduction electrocatalyst. © 2021 The Author(s)

  • 2021 • 460
    Mesoporous NiFe2O4 with Tunable Pore Morphology for Electrocatalytic Water Oxidation
    Simon, C. and Timm, J. and Tetzlaff, D. and Jungmann, J. and Apfel, U.-P. and Marschall, R.
    CHEMELECTROCHEM. Volume: 8 (2021)
    view abstract10.1002/celc.202001280

    Mesoporous NiFe2O4 for electrocatalytic water splitting was prepared via soft-templating using citric-acid-complexed metal nitrates as precursors. The mesopore evolution during thermal treatment was examined systematically giving insights into the formation process of mesoporous NiFe2O4. Detailed nitrogen physisorption analysis including desorption scanning experiments reveal the presence of highly accessible mesopores generating surface areas of up to 200 m2/g. The ability of the NiFe2O4 powders to perform electrocatalytic oxygen evolution reaction under alkaline conditions was investigated, highlighting the advantages of mesopore insertion. The most active samples reach a current density of 10 mA cm−2 at an overpotential of 410 mV with a small Tafel slope of 50 mV dec−1, indicating an enhanced activity that originated from the increased catalyst surface. © 2020 The Authors. ChemElectroChem published by Wiley-VCH GmbH

  • 2021 • 459
    Direct Detection of Surface Species Formed on Iridium Electrocatalysts during the Oxygen Evolution Reaction
    BalaKrishnan, A. and Blanc, N. and Hagemann, U. and Gemagami, P. and Wonner, K. and Tschulik, K. and Li, T.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202106790

    The effect of surface orientations on the formation of iridium oxide species during the oxygen evolution reaction (OER) remains yet unknown. Herein, we use a needle-shaped iridium atom probe specimen as a nanosized working electrode to ascertain the role of the surface orientations in the formation of oxide species during OER. At the beginning of electrolysis, the top 2–3 nm of (024), (026), (113), and (115) planes are covered by IrO−OH, which activates all surfaces towards OER. A thick subsurface oxide layer consisting of sub-stoichiometric Ir−O species is formed on the open (024) planes as OER proceeds. Such metastable Ir−O species are thought to provide an additional contribution to the OER activity. Overall, this study sheds light on the importance of the morphological effects of iridium electrocatalysts for OER. It also provides an innovative approach that can directly reveal surface species on electrocatalysts at atomic scale. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

  • 2021 • 458
    Hollow CeO2@Co2N Nanosheets Derived from Co-ZIF-L for Boosting the Oxygen Evolution Reaction
    Zhang, J. and He, W. and Aiyappa, H.B. and Quast, T. and Dieckhöfer, S. and Öhl, D. and Junqueira, J.R.C. and Chen, Y.-T. and Masa, J. and Schuhmann, W.
    ADVANCED MATERIALS INTERFACES. Volume: 8 (2021)
    view abstract10.1002/admi.202100041

    Rational design of highly active electrocatalysts for the oxygen evolution reaction (OER) is critical to improving overall electrochemical water splitting efficiency. This study suggests hollow CeO2@Co2N nanosheets synthesized using Co-ZIF-L as a precursor, followed by a hydrothermal reaction and a nitridation process as very attractive OER catalysts. The increased activity is supposed to be due to nitridation and strong electronic interaction between CeO2 and Co2N that contribute to the formation of active CoOOH phase. The synthesized CeO2@Co2N exhibits low overpotentials of 219 and 345 mV at OER current densities of 10 and 100 mA cm–2, respectively, as well as a long-term durability of 30 h at a comparatively high current density of 100 mA cm−2. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

  • 2021 • 457
    Trace Metal Loading of B-N-Co-doped Graphitic Carbon for Active and Stable Bifunctional Oxygen Reduction and Oxygen Evolution Electrocatalysts
    Sikdar, N. and Schwiderowski, P. and Medina, D. and Dieckhöfer, S. and Quast, T. and Brix, A.C. and Cychy, S. and Muhler, M. and Masa, J. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 8 (2021)
    view abstract10.1002/celc.202100374

    Understanding the structure-property relations of non-precious metal heteroatom co-doped carbon electrocatalysts exhibiting high activity as well as long-term durability for both ORR and OER remains challenging but is indispensable for the development of bifunctional ORR/OER electrocatalysts. We propose B-N-co-doped graphitic 2D carbon nanostructures impregnated with controlled amount of transition metals (M-BCN; M=Co, Ni, Fe, Cu) as bifunctional ORR/OER electrocatalysts. Co-BCN outperformed the Ni-, Fe-, Cu-based BCN catalysts exhibiting potential values of 0.87 V and 1.62 V at −1 mA/cm2 and 10 mA/cm2 during ORR and OER, respectively. Importantly, Co-BCN shows bifunctional cyclic stability (Δη; EOER−EORR=0.75 V) of up to 300 cycles in 1 M KOH for a duration of 20 h with total activity loss of only 10.2 % (ORR) and 6.2 % (OER), respectively. A low loading of the metal precursors was used to preserve porosity and to facilitate the formation of metal nanoparticles or M−NxB/C type species embedded in the graphitic carbon layers. The B-N-co-doped graphitic layers also protect the embedded metal nanoparticles explaining the observed long-term stability. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH

  • 2021 • 456
    Stabilization of an iridium oxygen evolution catalyst by titanium oxides
    Kasian, O. and Li, T. and Mingers, A.M. and Schweinar, K. and Savan, A. and Ludwig, A. and Mayrhofer, K.
    JPHYS ENERGY. Volume: 3 (2021)
    view abstract10.1088/2515-7655/abbd34

    The anodic oxygen evolution reaction (OER) has significant importance in many electrochemical technologies. In proton exchange membrane water electrolyzers it plays a pivotal role for electrochemical energy conversion, yet sluggish kinetics and the corrosive environment during operation still compel significant advances in electrode materials to enable a widespread application. Up-To-date Iridium is known as the best catalyst material for the OER in acidic media due to its relatively high activity and long-Term stability. However, scarcity of iridium drives the development of strategies for its efficient utilization. One promising way would be the formation of mixtures in which the noble catalyst element is dispersed in the non-noble matrix of more stable metals or metal oxides. A promising valve metal oxide is TiOx, yet the degree to which performance can be optimized by composition is still unresolved. Thus, using a scanning flow cell connected to an inductively coupled plasma mass spectrometer, we examined the activity and stability for the OER of an oxidized Ir Ti thin film material library covering the composition range from 20 70 at.% of Ir. We find that regardless of the composition the rate of Ir dissolution is observed to be lower than that of thermally prepared IrO2. Moreover, mixtures containing at least 50 at.% of Ir exhibit reactivity comparable to IrO2. Their superior performance is discussed with complementary information obtained from atomic scale and electronic structure analysis using atom probe tomography and x-ray photoelectron spectroscopy. Overall, our data shows that Ir Ti mixtures can be promising OER catalysts with both high activity and high stability. © 2021 JPhys Energy. All right reserved.

  • 2021 • 455
    A bioinspired oxoiron(iv) motif supported on a N2S2macrocyclic ligand
    Deutscher, J. and Gerschel, P. and Warm, K. and Kuhlmann, U. and Mebs, S. and Haumann, M. and Dau, H. and Hildebrandt, P. and Apfel, U.-P. and Ray, K.
    CHEMICAL COMMUNICATIONS. Volume: 57 (2021)
    view abstract10.1039/d1cc00250c

    A mononuclear oxoiron(iv) complex1-transbearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIVO intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe-O bond and enhances the oxidative reactivity of the FeIVO unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of thecis-thiolate ligated oxoiron(iv) motif in key metabolic transformations. © The Royal Society of Chemistry 2021.

  • 2021 • 454
    Real-Time Measurement of Cellobiose and Glucose Formation during Enzymatic Biomass Hydrolysis
    Chang, H. and Wohlschlager, L. and Csarman, F. and Ruff, A. and Schuhmann, W. and Scheiblbrandner, S. and Ludwig, R.
    ANALYTICAL CHEMISTRY. Volume: 93 (2021)
    view abstract10.1021/acs.analchem.1c01182

    Enzymatic hydrolysis of lignocellulosic biomass for biofuel production relies on complex multi-enzyme ensembles. Continuous and accurate measurement of the released key products is crucial in optimizing the industrial degradation process and also investigating the activity and interaction between the involved enzymes and the insoluble substrate. Amperometric biosensors have been applied to perform continuous cellobiose measurements during the enzymatic hydrolysis of pure cellulose powders. The oxygen-sensitive mediators used in these biosensors restricted their function under physiological or industrial conditions. Also, the combined measurements of the hydrolysis products cellobiose and glucose require a high selectivity of the biorecognition elements. We employed an [Os(2,2′-bipyridine)2Cl]Cl-modified polymer and cellobiose dehydrogenase to fabricate a cellobiose biosensor, which can accurately and specifically detect cellobiose even in the presence of oxygen and the other main product glucose. Additionally, a glucose biosensor was fabricated to simultaneously measure glucose produced from cellobiose by β-glucosidases. The cellobiose and glucose biosensors work at applied potentials of +0.25 and +0.45 V versus Ag|AgCl (3 M KCl), respectively, and can selectively detect their substrate. Both biosensors were used in combination to monitor the hydrolysis of pure cellulose of low crystallinity or industrial corncob samples. The obtained results correlate with the high-performance liquid chromatography pulsed amperometric detection analysis and demonstrate that neither oxygen nor the presence of redox-active compounds from the lignin fraction of the corncob interferes with the measurements. © 2021 The Authors. Published by American Chemical Society.

  • 2021 • 453
    Oxygenated PAH Formation Chemistry Investigation in Anisole Jet Stirred Reactor Oxidation by a Thermodynamic Approach
    Chen, B. and Kruse, S. and Schmid, R. and Cai, L. and Hansen, N. and Pitsch, H.
    ENERGY AND FUELS. Volume: 35 (2021)
    view abstract10.1021/acs.energyfuels.0c03829

    Oxygenated poly aromatic hydrocarbons (OPAH) are widely produced in biomass combustion. Recent studies suggest significantly higher toxicity for OPAH in comparison to PAH and soot. However, the present understanding of OPAH formation chemistry is rudimentary. Hence, fundamental knowledge on the formation pathways of OPAH is urgently required to develop predictive models for adequate emission control strategies on OPAH emission in biomass combustion. In this work, the OPAH formation from oxidation of anisole, a representative biomass surrogate, was studied in a jet stirred reactor (JSR). The reaction products were in-situ sampled by molecular beam (MB) and analyzed by time-of-flight mass spectrometry (TOF-MS) using synchrotron radiation as a photon ionization source. The unique experimental setup allows direct detection and identification of large OPAH molecules. Over 40 sum formula of OPAH species were detected and identified by experiments, and a computational thermodynamic approach was applied to deduce possible isomers of OPAH species. The thermodynamic modeling approach assumes that isomers with relatively lower Gibbs free energies are more likely to be present due to possible lower activation energies in the formation pathways. Furthermore, the formation pathways of elucidated OPAH structures are proposed by analogy to the literature based on the intermediate information. The joint study of OPAH by experiments and quantum chemistry advances the understanding of OPAH formation chemistry. © 2020 American Chemical Society.

  • 2021 • 452
    Oxygen Removal from a Hydrocarbon Containing Gas Stream by Plasma Catalysis
    Urbanietz, T. and Stewig, C. and Böke, M. and von Keudell, A.
    PLASMA CHEMISTRY AND PLASMA PROCESSING. Volume: 41 (2021)
    view abstract10.1007/s11090-020-10151-6

    Hydrocarbon exhaust gases containing residual amounts of oxygen may pose challenges for their conversion into value added chemicals downstream, because oxygen may affect the process. This could be avoided by plasma treating the exhaust to convert O 2 in presence of hydrocarbons into CO or CO 2 on demand. The underlying reaction mechanisms of plasma conversion of O 2 in the presence of hydrocarbons are analysed in a model experiment using a radio frequency atmospheric pressure helium plasma in a plug flow design with admixtures of O 2 and of CH 4. The plasma process is analysed with infrared absorption spectroscopy to monitor CH 4 as well as the reaction products CO, CO 2 and H 2O. It is shown that the plasma reaction for oxygen (or methane removal) is triggered by the formation of oxygen atoms from O 2 by electron. Oxygen atoms are efficiently converted into CO, CO 2 and H 2O with CO being an intermediate in that reaction sequence. However, at very high oxygen admixtures to the gas stream, the conversion efficiency saturates because electron induced O 2 dissociation in the plasma seems to be counterbalanced by a reduction of the efficiency of electron heating at high admixtures of O 2. The impact of a typical industrial manganese oxide catalyst is evaluated for methane conversion. It is shown that the conversion efficiency is enhanced by 15–20% already at temperatures of 430 K. © 2021, The Author(s).

  • 2021 • 451
    Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure
    Cao, Z. and Xu, Y. and Lyu, P. and Dierks, M. and Morales-García, Á. and Schrader, W. and Nachtigall, P. and Schüth, F.
    CHEMSUSCHEM. Volume: 14 (2021)
    view abstract10.1002/cssc.202002248

    The present study describes an interesting and practical catalytic system that allows flexible conversion of lignin into aromatic or aliphatic hydrocarbons, depending on the hydrogen partial pressure. A combination of experiment and theory shows that the product distribution between aromatics and aliphatics can be simply tuned by controlling the availability of hydrogen on the catalyst surface. Noticeably, these pathways lead to almost complete oxygen removal from lignin biomass, yielding high-quality hydrocarbons. Thus, hydrogen–lignin co-refining by using this catalytic system provides high flexibility in hydrogen storage/consumption towards meeting different regional and temporal demands. © 2020 The Authors. ChemSusChem published by Wiley-VCH GmbH

  • 2021 • 450
    A safety cap protects hydrogenase from oxygen attack
    Winkler, M. and Duan, J. and Rutz, A. and Felbek, C. and Scholtysek, L. and Lampret, O. and Jaenecke, J. and Apfel, U.-P. and Gilardi, G. and Valetti, F. and Fourmond, V. and Hofmann, E. and Léger, C. and Happe, T.
    NATURE COMMUNICATIONS. Volume: 12 (2021)
    view abstract10.1038/s41467-020-20861-2

    [FeFe]-hydrogenases are efficient H2-catalysts, yet upon contact with dioxygen their catalytic cofactor (H-cluster) is irreversibly inactivated. Here, we combine X-ray crystallography, rational protein design, direct electrochemistry, and Fourier-transform infrared spectroscopy to describe a protein morphing mechanism that controls the reversible transition between the catalytic Hox-state and the inactive but oxygen-resistant Hinact-state in [FeFe]-hydrogenase CbA5H of Clostridium beijerinckii. The X-ray structure of air-exposed CbA5H reveals that a conserved cysteine residue in the local environment of the active site (H-cluster) directly coordinates the substrate-binding site, providing a safety cap that prevents O2-binding and consequently, cofactor degradation. This protection mechanism depends on three non-conserved amino acids situated approximately 13 Å away from the H-cluster, demonstrating that the 1st coordination sphere chemistry of the H-cluster can be remote-controlled by distant residues. © 2021, The Author(s).

  • 2021 • 449
    Importance of catalyst–photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes
    Krysiak, O.A. and Junqueira, J.R.C. and Conzuelo, F. and Bobrowski, T. and Masa, J. and Wysmolek, A. and Schuhmann, W.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY. Volume: 25 (2021)
    view abstract10.1007/s10008-020-04636-9

    Photoelectrochemical water splitting is mostly impeded by the slow kinetics of the oxygen evolution reaction. The construction of photoanodes that appreciably enhance the efficiency of this process is of vital technological importance towards solar fuel synthesis. In this work, Mo-modified BiVO4 (Mo:BiVO4), a promising water splitting photoanode, was modified with various oxygen evolution catalysts in two distinct configurations, with the catalysts either deposited on the surface of Mo:BiVO4 or embedded inside a Mo:BiVO4 film. The investigated catalysts included monometallic, bimetallic, and trimetallic oxides with spinel and layered structures, and nickel boride (NixB). In order to follow the influence of the incorporated catalysts and their respective properties, as well as the photoanode architecture on photoelectrochemical water oxidation, the fabricated photoanodes were characterised for their optical, morphological, and structural properties, photoelectrocatalytic activity with respect to evolved oxygen, and recombination rates of the photogenerated charge carriers. The architecture of the catalyst-modified Mo:BiVO4 photoanode was found to play a more decisive role than the nature of the catalyst on the performance of the photoanode in photoelectrocatalytic water oxidation. Differences in the photoelectrocatalytic activity of the various catalyst-modified Mo:BiVO4 photoanodes are attributed to the electronic structure of the materials revealed through differences in the Fermi energy levels. This work thus expands on the current knowledge towards the design of future practical photoanodes for photoelectrocatalytic water oxidation. © 2020, The Author(s).

  • 2021 • 448
    Tailoring the Electrocatalytic Activity of Pentlandite FexNi9-XS8 Nanoparticles via Variation of the Fe : Ni Ratio for Enhanced Water Oxidation
    Amin, H.M.A. and Attia, M. and Tetzlaff, D. and Apfel, U.-P.
    CHEMELECTROCHEM. Volume: 8 (2021)
    view abstract10.1002/celc.202100713

    The development of efficient and cost-effective electrocatalytic materials is an important part in scaling up sustainable electrochemical energy devices such as electrolyzers and fuel cells. In particular, the sluggish kinetics of the oxygen evolution reaction (OER) during water splitting renders the need of a catalyst indispensable. However, the development of catalysts is often based on laboratorial trial-and-error approaches and complex synthetic routes. Herein, the facile and systematic synthesis of pentlandite-like FexNi9-xS8 (x=0–9) nanosized particles from its elements with distinct Fe: Ni ratios was achieved using a mechanochemical method. The OER performance is optimized through tailoring the surface properties via altering the catalyst composition. The catalytic activity increases with higher nickel content in the structure, accomplishing an overpotential of 354 and 420 mV for ‘Ni9S8’ to drive 10 and 100 mA cm−2, respectively, with high stability. The in-situ formed nickel oxide/hydroxide species concurrent with sulphur depletion from the pentlandite structure upon OER are more active than NiS, inferring the crucial role of the pentlandite structure in activity. The herein reported simple synthetic approach could bring significant progress in the catalyst material development via rationally screening pentlandites with desired properties for modern energy systems. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH.

  • 2021 • 447
    Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction
    Yu, H. and Chen, F. and Li, X. and Huang, H. and Zhang, Q. and Su, S. and Wang, K. and Mao, E. and Mei, B. and Mul, G. and Ma, T. and Zhang, Y.
    NATURE COMMUNICATIONS. Volume: 12 (2021)
    view abstract10.1038/s41467-021-24882-3

    Solar-light driven CO2 reduction into value-added chemicals and fuels emerges as a significant approach for CO2 conversion. However, inefficient electron-hole separation and the complex multi-electrons transfer processes hamper the efficiency of CO2 photoreduction. Herein, we prepare ferroelectric Bi3TiNbO9 nanosheets and employ corona poling to strengthen their ferroelectric polarization to facilitate the bulk charge separation within Bi3TiNbO9 nanosheets. Furthermore, surface oxygen vacancies are introduced to extend the photo-absorption of the synthesized materials and also to promote the adsorption and activation of CO2 molecules on the catalysts’ surface. More importantly, the oxygen vacancies exert a pinning effect on ferroelectric domains that enables Bi3TiNbO9 nanosheets to maintain superb ferroelectric polarization, tackling above-mentioned key challenges in photocatalytic CO2 reduction. This work highlights the importance of ferroelectric properties and controlled surface defect engineering, and emphasizes the key roles of tuning bulk and surface properties in enhancing the CO2 photoreduction performance. © 2021, The Author(s).

  • 2021 • 446
    Comparing the Activity of Complex Solid Solution Electrocatalysts Using Inflection Points of Voltammetric Activity Curves as Activity Descriptors
    Löffler, T. and Waag, F. and Gökce, B. and Ludwig, Al. and Barcikowski, S. and Schuhmann, W.
    ACS CATALYSIS. Volume: 11 (2021)
    view abstract10.1021/acscatal.0c03313

    Complex solid solution (CSS) (often denoted as high-entropy alloy) electrocatalysts enable access to unique possibilities for tailoring active sites while overcoming ever-existing limitations in electrocatalysis by unique interactions of various elements in direct neighborhood. The challenge lies in the development of strategies, which allow for systematic design of element combination and composition optimization in the multinary composition space. This challenge is accompanied by a lack of a suitable analysis method of experimental activity measurements, which can cope with the complex surface structure of this catalyst class. In this work, we propose the advantageous use of inflection points of voltammetric activity curves as activity descriptors enabling to correlate the potential of individual surface site groups to the respective peaks in the adsorption energy distribution pattern. This concept allows to methodologically gather information about the importance of each element in a CSS with respect to activity and stability of the relevant active sites and provides the basis for a guideline for systematic composition optimization. Further, the effect of phase stability on specific surface site groups as induced by degradation of the CSS phase or oxidation can be monitored. These concepts are experimentally evaluated using Cr-Mn-Fe-Co-Ni as a model system. Nanoparticles are synthesized with systematically varied compositions by means of scalable laser ablation synthesis using a multinary target. The composition is optimized with respect to the electrocatalytic activity for the oxygen reduction reaction (ORR) by varying its Mn content via laser ablation synthesis in ethanol. Subsequently, the concept is applied using rotating disk electrodes for ORR analysis in alkaline media. © 2021 American Chemical Society. All rights reserved.

  • 2021 • 445
    Synergistic Effects of Co and Fe on the Oxygen Evolution Reaction Activity of LaCoxFe1−xO3
    Füngerlings, A. and Koul, A. and Dreyer, M. and Rabe, A. and Morales, D.M. and Schuhmann, W. and Behrens, M. and Pentcheva, R.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: (2021)
    view abstract10.1002/chem.202102829

    In a combined experimental and theoretical study we assess the role of Co incorporation on the OER activity of LaCoxFe1−xO3. Phase pure perovskites were synthesized up to (Formula presented.) in 0.025/0.050 steps. HAADF STEM and EDX analysis points towards FeO2-terminated (001)-facets in LaFeO3, in accordance with the stability diagram obtained from density functional theory calculations with a Hubbard U term (DFT+U). Linear sweep voltammetry conducted in a rotating disk electrode setup shows a reduction of the OER overpotential and a nonmonotonic trend with x, with double layer capacitance measurements indicating an intrinsic nature of activity. This is supported by DFT+U results that show reduced overpotentials for both Fe and Co reaction sites with the latter reaching values of 0.32–0.40 V, ∼0.3 V lower than for Fe. This correlates with a stronger reduction of the binding energy difference of the *O and *OH intermediates towards an optimum value of 1.6 eV for (Formula presented.), the OH deprotonation being the potential limiting step in most cases. Significant variations of the magnetic moments of both surface and subsurface Co and Fe during OER demonstrate that the beneficial effect is a result of a concerted action involving many surrounding ions, which extends the concept of the active site. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

  • 2021 • 444
    Single-Entity Electrocatalysis of Individual “Picked-and-Dropped” Co3O4 Nanoparticles on the Tip of a Carbon Nanoelectrode
    Quast, T. and Aiyappa, H.B. and Saddeler, S. and Wilde, P. and Chen, Y.-T. and Schulz, S. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202014384

    Nano-electrochemical tools to assess individual catalyst entities are critical to comprehend single-entity measurements. The intrinsic electrocatalytic activity of an individual well-defined Co3O4 nanoparticle supported on a carbon-based nanoelectrode is determined by employing an efficient SEM-controlled robotic technique for picking and placing a single catalyst particle onto a modified carbon nanoelectrode surface. The stable nanoassembly is microscopically investigated and subsequently electrochemically characterized. The hexagonal-shaped Co3O4 nanoparticles demonstrate size-dependent electrochemical activity and exhibit very high catalytic activity with a current density of up to 11.5 A cm−2 at 1.92 V (vs. RHE), and a turnover frequency of 532±100 s−1 at 1.92 V (vs. RHE) towards catalyzing the oxygen evolution reaction. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

  • 2021 • 443
    Crystalline ytterbium disilicate environmental barrier coatings made by high velocity oxygen fuel spraying
    Wolf, M. and Mack, D.E. and Mauer, G. and Guillon, O. and Vaßen, R.
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY. Volume: (2021)
    view abstract10.1111/ijac.13829

    Dense environmental barrier coatings (EBCs) are an essential prerequisite to exploit the advantages offered by SiC-based fiber reinforced ceramic matrix composites (CMCs) to increase efficiency in gas turbines. Today's state-of-the art materials for application as EBCs are rare-earth (RE) silicates which, however, form amorphous phases upon rapid quenching from the melt. This makes their processing by thermal spray a challenge. Recently, high velocity oxygen fuel (HVOF) spraying was proposed as potential solution since the melting degree of the feedstock can be controlled effectively. This work studies the deposition of ytterbium disilicate (YbDS) at short stand-off distances and variant total feed rates and oxy-fuel ratios of the working gas. It was found that the overall degree of crystallinity could be kept at high level above 90%. The kinetic energy transferred by impinging particles was found to be an effective parameter to control the densification of the coatings. Porosities well below 10% were achieved while fully dense coatings were impeded due to the progressive accumulation of stresses in the coatings. © 2021 The Authors. International Journal of Applied Ceramic Technology published by Wiley Periodicals LLC on behalf of American Ceramics Society (ACERS)

  • 2021 • 442
    Single Particle Nanoelectrochemistry Reveals the Catalytic Oxygen Evolution Reaction Activity of Co3O4 Nanocubes
    Quast, T. and Varhade, S. and Saddeler, S. and Chen, Y.-T. and Andronescu, C. and Schulz, S. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202109201

    Co3O4 nanocubes are evaluated concerning their intrinsic electrocatalytic activity towards the oxygen evolution reaction (OER) by means of single-entity electrochemistry. Scanning electrochemical cell microscopy (SECCM) provides data on the electrocatalytic OER activity from several individual measurement areas covering one Co3O4 nanocube of a comparatively high number of individual particles with sufficient statistical reproducibility. Single-particle-on-nanoelectrode measurements of Co3O4 nanocubes provide an accelerated stress test at highly alkaline conditions with current densities of up to 5.5 A cm−2, and allows to derive TOF values of up to 2.8×104 s−1 at 1.92 V vs. RHE for surface Co atoms of a single cubic nanoparticle. Obtaining such high current densities combined with identical-location transmission electron microscopy allows monitoring the formation of an oxy(hydroxide) surface layer during electrocatalysis. Combining two independent single-entity electrochemistry techniques provides the basis for elucidating structure–activity relations of single electrocatalyst nanoparticles with well-defined surface structure. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

  • 2021 • 441
    Rational Development of Guanidinate and Amidinate Based Cerium and Ytterbium Complexes as Atomic Layer Deposition Precursors: Synthesis, Modeling, and Application
    Kaur, P. and Mai, L. and Muriqi, A. and Zanders, D. and Ghiyasi, R. and Safdar, M. and Boysen, N. and Winter, M. and Nolan, M. and Karppinen, M. and Devi, A.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 27 (2021)
    view abstract10.1002/chem.202003907

    Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

  • 2021 • 440
    Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers
    Lv, B. and Li, X. and Guo, K. and Ma, J. and Wang, Y. and Lei, H. and Wang, F. and Jin, X. and Zhang, Q. and Zhang, W. and Long, R. and Xiong, Y. and Apfel, U.-P. and Cao, R.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202102523

    Achieving a selective 2 e− or 4 e− oxygen reduction reaction (ORR) is critical but challenging. Herein, we report controlling ORR selectivity of Co porphyrins by tuning only steric effects. We designed Co porphyrin 1 with meso-phenyls each bearing a bulky ortho-amido group. Due to the resulted steric hinderance, 1 has four atropisomers with similar electronic structures but dissimilar steric effects. Isomers αβαβ and αααα catalyze ORR with n=2.10 and 3.75 (n is the electron number transferred per O2), respectively, but ααββ and αααβ show poor selectivity with n=2.89–3.10. Isomer αβαβ catalyzes 2 e− ORR by preventing a bimolecular O2 activation path, while αααα improves 4 e− ORR selectivity by improving O2 binding at its pocket, a feature confirmed by spectroscopy methods, including O K-edge near-edge X-ray absorption fine structure. This work represents an unparalleled example to improve 2 e− and 4 e− ORR by tuning only steric effects without changing molecular and electronic structures. © 2021 Wiley-VCH GmbH

  • 2021 • 439
    Single co3o4 nanocubes electrocatalyzing the oxygen evolution reaction: Nano-impact insights into intrinsic activity and support effects
    Liu, Z. and Corva, M. and Amin, H.M.A. and Blanc, N. and Linnemann, J. and Tschulik, K.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. Volume: 22 (2021)
    view abstract10.3390/ijms222313137

    Single-entity electrochemistry allows for assessing electrocatalytic activities of individual material entities such as nanoparticles (NPs). Thus, it becomes possible to consider intrinsic electrochemical properties of nanocatalysts when researching how activity relates to physical and structural material properties. Conversely, conventional electrochemical techniques provide a normal-ized sum current referring to a huge ensemble of NPs constituting, along with additives (e.g., bind-ers), a complete catalyst-coated electrode. Accordingly, recording electrocatalytic responses of single NPs avoids interferences of ensemble effects and reduces the complexity of electrocatalytic pro-cesses, thus enabling detailed description and modelling. Herein, we present insights into the oxygen evolution catalysis at individual cubic Co3O4 NPs impacting microelectrodes of different support materials. Simulating diffusion at supported nanocubes, measured step current signals can be analyzed, providing edge lengths, corresponding size distributions, and interference-free turnover frequencies. The provided nano-impact investigation of (electro-)catalyst-support effects contra-dicts assumptions on a low number of highly active sites. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2021 • 438
    The Roles of Composition and Mesostructure of Cobalt-Based Spinel Catalysts in Oxygen Evolution Reactions
    Rabe, A. and Büker, J. and Salamon, S. and Koul, A. and Hagemann, U. and Landers, J. and Friedel Ortega, K. and Peng, B. and Muhler, M. and Wende, H. and Schuhmann, W. and Behrens, M.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: (2021)
    view abstract10.1002/chem.202102400

    By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3O4, MgCo2O4, Co2FeO4, Co2AlO4 and CoFe2O4. The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3O4 and CoFe2O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

  • 2021 • 437
    Searching novel complex solid solution electrocatalysts in unconventional element combinations
    Krysiak, O.A. and Schumacher, S. and Savan, A. and Schuhmann, W. and Ludwig, A. and Andronescu, C.
    NANO RESEARCH. Volume: (2021)
    view abstract10.1007/s12274-021-3637-z

    Despite outstanding accomplishments in catalyst discovery, finding new, more efficient, environmentally neutral, and noble metal-free catalysts remains challenging and unsolved. Recently, complex solid solutions consisting of at least five different elements and often named as high-entropy alloys have emerged as a new class of electrocatalysts for a variety of reactions. The multicomponent combinations of elements facilitate tuning of active sites and catalytic properties. Predicting optimal catalyst composition remains difficult, making testing of a very high number of them indispensable. We present the high-throughput screening of the electrochemical activity of thin film material libraries prepared by combinatorial co-sputtering of metals which are commonly used in catalysis (Pd, Cu, Ni) combined with metals which are not commonly used in catalysis (Ti, Hf, Zr). Introducing unusual elements in the search space allows discovery of catalytic activity for hitherto unknown compositions. Material libraries with very similar composition spreads can show different activities vs. composition trends for different reactions. In order to address the inherent challenge of the huge combinatorial material space and the inability to predict active electrocatalyst compositions, we developed a high-throughput process based on co-sputtered material libraries, and performed high-throughput characterization using energy dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (SEM), X-ray diffraction (XRD) and conductivity measurements followed by electrochemical screening by means of a scanning droplet cell. The results show surprising material compositions with increased activity for the oxygen reduction reaction and the hydrogen evolution reaction. Such data are important input data for future data-driven materials prediction. [Figure not available: see fulltext.] © 2021, The Author(s).

  • 2021 • 436
    Micro atmospheric pressure plasma jets excited in He/O2by voltage waveform tailoring: A study based on a numerical hybrid model and experiments
    Liu, Y. and Korolov, I. and Trieschmann, J. and Steuer, D. and Schulz-Von Der Gathen, V. and Böke, M. and Bischoff, L. and Hübner, G. and Schulze, J. and Mussenbrock, T.
    PLASMA SOURCES SCIENCE AND TECHNOLOGY. Volume: 30 (2021)
    view abstract10.1088/1361-6595/abd0e0

    A hybrid simulation code is developed to treat electrons fully kinetically by the particle-in-cell/Monte Carlo collision (PIC/MCC) algorithm, while ions and neutral species are handled by a fluid model, including a time slicing technique to reduce the computational expenses caused by the responses of various species on different time scales. The code is used to investigate a capacitively coupled COST reference micro atmospheric pressure helium plasma jet with 0.1% oxygen admixture excited by a valley-type tailored voltage waveform with a fixed peak-to-peak voltage of 400 V, and a fundamental frequency of 13.56 MHz. The computational results are compared to experiments based on several sophisticated diagnostics, showing good agreement in the electron impact helium excitation rate, the helium metastable density, and the atomic oxygen density. The spatio-temporal electron heating dynamics, are found to be asymmetrical due to the specific shape of the driving voltage waveform. Tailoring the voltage waveform is shown to enable to control the electron energy probability function (EEPF) in distinct spatio-temporal regions of interest. As a consequence, the generation of reactive neutral species can be enhanced by increasing the number of consecutive harmonics. Based on a simplified two dimensional neutral transport model in the hybrid code, it is demonstrated that the transport between the electrodes, as well as the gas flow have different effects on various neutral species distributions due to the relevant chemical reaction rates for the generation and destruction of species. © 2021 IOP Publishing Ltd.

  • 2021 • 435
    Calibrating SECCM measurements by means of a nanoelectrode ruler. The intrinsic oxygen reduction activity of PtNi catalyst nanoparticles
    Tetteh, E.B. and Löffler, T. and Tarnev, T. and Quast, T. and Wilde, P. and Aiyappa, H.B. and Schumacher, S. and Andronescu, C. and Tilley, R.D. and Chen, X. and Schuhmann, W.
    NANO RESEARCH. Volume: (2021)
    view abstract10.1007/s12274-021-3702-7

    Scanning electrochemical cell microscopy (SECCM) is increasingly applied to determine the intrinsic catalytic activity of single electrocatalyst particle. This is especially feasible if the catalyst nanoparticles are large enough that they can be found and counted in post-SECCM scanning electron microscopy images. Evidently, this becomes impossible for very small nanoparticles and hence, a catalytic current measured in one landing zone of the SECCM droplet cannot be correlated to the exact number of catalyst particles. We show, that by introducing a ruler method employing a carbon nanoelectrode decorated with a countable number of the same catalyst particles from which the catalytic activity can be determined, the activity determined using SECCM from many spots can be converted in the intrinsic catalytic activity of a certain number of catalyst nanoparticles.[Figure not available: see fulltext.] © 2021, The Author(s).

  • 2021 • 434
    The Impact of Antimony on the Performance of Antimony Doped Tin Oxide Supported Platinum for the Oxygen Reduction Reaction
    Jalalpoor, D. and Göhl, D. and Paciok, P. and Heggen, M. and Knossalla, J. and Radev, I. and Peinecke, V. and Weidenthaler, C. and Mayrhofer, K.J.J. and Ledendecker, M. and Schüth, F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY. Volume: 168 (2021)
    view abstract10.1149/1945-7111/abd830

    Antimony doped tin oxide (ATO) supported platinum nanoparticles are considered a more stable replacement for conventional carbon supported platinum materials for the oxygen reduction reaction. However, the interplay of antimony, tin and platinum and its impact on the catalytic activity and durability has only received minor attention. This is partly due to difficulties in the preparation of morphology- and surface-area-controlled antimony-doped tin oxide materials. The presented study sheds light onto catalyst-support interaction on a fundamental level, specifically between platinum as a catalyst and ATO as a support material. By using a previously described hard-templating method, a series of morphology controlled ATO support materials for platinum nanoparticles with different antimony doping concentrations were prepared. Compositional and morphological changes before and during accelerated stress tests are monitored, and underlying principles of deactivation, dissolution and catalytic performance are elaborated. We demonstrate that mobilized antimony species and strong metal support interactions lead to Pt/Sb alloy formation as well as partially blocking of active sites. This has adverse consequences on the accessible platinum surface area, and affects negatively the catalytic performance of platinum. Operando time-resolved dissolution experiments uncover the potential boundary conditions at which antimony dissolution can be effectively suppressed and how platinum influences the dissolution behavior of the support. © 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

  • 2021 • 433
    Atomic oxygen generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and O2
    Korolov, I. and Steuer, D. and Bischoff, L. and Hübner, G. and Liu, Y. and Schulz-Von der Gathen, V. and Böke, M. and Mussenbrock, T. and Schulze, J.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 54 (2021)
    view abstract10.1088/1361-6463/abd20e

    Absolute atomic oxygen densities measured space resolved in the active plasma volume of a COST microplasma reference jet operated in He/O2 and driven by tailored voltage waveforms are presented. The measurements are performed for different shapes of the driving voltage waveform, oxygen admixture concentrations, and peak-to-peak voltages. Peaks- and valleys-waveforms constructed based on different numbers of consecutive harmonics, N, of the fundamental frequency f 0 =13.56 MHz, different relative phases and amplitudes are used. The results show that the density of atomic oxygen can be controlled and optimized by voltage waveform tailoring (VWT). It is significantly enhanced by increasing the number of consecutive driving harmonics at fixed peak-to-peak voltage. The shape of the measured density profiles in the direction perpendicular to the electrodes can be controlled by VWT as well. For N >1 and peaks-/valleys-waveforms, it exhibits a strong spatial asymmetry with a maximum at one of the electrodes due to the spatially asymmetric electron power absorption dynamics. Thus, the atomic oxygen flux can be directed primarily towards one of the electrodes. The generation of atomic oxygen can be further optimized by changing the reactive gas admixture and by tuning the peak-to-peak voltage amplitude. The obtained results are understood based on a detailed analysis of the spatio-temporal dynamics of energetic electrons revealed by phase resolved optical emission spectroscopy. © 2021 Institute of Physics Publishing. All rights reserved.

  • 2021 • 432
    Electrocatalytic Oxidation of Glycerol Using Solid-State Synthesised Nickel Boride: Impact of Key Electrolysis Parameters on Product Selectivity
    Brix, A.C. and Morales, D.M. and Braun, M. and Jambrec, D. and Junqueira, J.R.C. and Cychy, S. and Seisel, S. and Masa, J. and Muhler, M. and Andronescu, C. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 8 (2021)
    view abstract10.1002/celc.202100739

    Water electrolysis is a promising technology for sustainable hydrogen production; however, its commercialisation is limited by sluggish kinetics of the oxygen evolution reaction (OER). A potential alternative to the OER is hence required and is seen in the electrocatalytic glycerol oxidation reaction (GOR) as it offers concomitant value-added product generation from a cheap and abundant feedstock. Here, we show a facile solid-state synthesis method to obtain Ni-boride, a non-noble metal-based catalyst subsequently used in an in-depth study of the GOR product distribution as a function of key electrolysis parameters. Highly crystalline, mixed-phase Ni borides were obtained, and their synthesis was successfully optimised regarding GOR activity. Long-term chronoamperometry was conducted in a circular flow-through cell and samples were analysed by HPLC. It is shown that the formation of lactic acid, one of the most valuable GOR products, can be enhanced by optimising the electrolyte composition and the applied potential. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH

  • 2021 • 431
    Highly Efficient and Selective Aerobic Oxidation of Cinnamyl Alcohol under Visible Light over Pt-Loaded NaNbO3Enriched with Oxygen Vacancies by Ni Doping
    Zhao, G. and Bonke, S.A. and Schmidt, S. and Wang, Z. and Hu, B. and Falk, T. and Hu, Y. and Rath, T. and Xia, W. and Peng, B. and Schnegg, A. and Weng, Y. and Muhler, M.
    ACS SUSTAINABLE CHEMISTRY AND ENGINEERING. Volume: 9 (2021)
    view abstract10.1021/acssuschemeng.1c00460

    NaNbO3 enriched with oxygen vacancies by Ni doping was successfully synthesized via a polymerized complex method and applied as a photocatalyst in the oxidation of cinnamyl alcohol (CA) to cinnamaldehyde in air. Reaction rates as high as 45 μmol h-1 were achieved under visible light with a high apparent quantum efficiency of 67.2% and excellent chemoselectivity larger than 99%. UV-vis, electron paramagnetic resonance, and attenuated total reflectance infrared spectroscopy results indicate that the CA molecules preferentially adsorb at the oxygen vacancies, thus enabling electron transfer between coordinatively bound CA and NaNbO3 under visible light, inducing CA oxidation. The photocatalytic aerobic oxidation of CA is assumed to proceed via the one-photon pathway with H2O2 as the coupled product. The photodeposited Pt nanoparticles on the surface not only enhanced the oxidation rate but also improved the selectivity to cinnamaldehyde substantially because of the fast decomposition of formed H2O2, in this way avoiding its consecutive oxidation by H2O2. The oxygen vacancies on the surface generated by Ni doping are identified to play a decisive role in the chemisorption of cinnamyl alcohol and the interface charge transfer. © 2021 American Chemical Society. All rights reserved.

  • 2021 • 430
    Surface reactions during temperature-programmed desorption and reduction experiments with oxygen-functionalized carbon blacks
    Göckeler, M. and Berger, C.M. and Purcel, M. and Bergsträßer, R. and Schinkel, A.-P. and Muhler, M.
    APPLIED SURFACE SCIENCE. Volume: 561 (2021)
    view abstract10.1016/j.apsusc.2021.150044

    Carbon black was functionalized by gas-phase oxidation using nitric acid vapor at 150 °C, and temperature-programmed desorption (TPD) and temperature-programmed reduction (TPR) experiments were performed in a plug-flow reactor to analyze the decomposition mechanisms of oxygen-containing surface groups by monitoring evolved H2O, CO2, and CO quantitatively. Subsequent TPD measurements detected an enrichment of acidic surface groups with increasing duration of the HNO3 functionalization from 2 h to 24 h. A significant amount of H2O was released during the TPD experiments, yielding H2O evolution profiles which were deconvoluted into two Gaussian peaks at 162 °C and 228 °C. The combined analysis of the CO2 and H2O profiles indicates that desorbed H2O originates from chemisorbed water bound to carboxylic acid groups and from condensation reactions of carboxylic acids and phenols. Phenols and carbonyls were found to be reduced selectively by H2 during TPR, generating a pronounced H2O peak at 650 °C. A new peak in the CO2 evolution profile appeared at 575 °C in reducing atmosphere, which is assigned to the hydrolysis of anhydrides and lactones with subsequent decomposition. Thus, taking H2O into account is mandatory for a complete quantitative analysis of the decomposition mechanisms occurring during TPD and TPR experiments. © 2021 Elsevier B.V.

  • 2021 • 429
    Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions
    Xie, L. and Zhang, X.-P. and Zhao, B. and Li, P. and Qi, J. and Guo, X. and Wang, B. and Lei, H. and Zhang, W. and Apfel, U.-P. and Cao, R.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202015478

    Nature uses Fe porphyrin sites for the oxygen reduction reaction (ORR). Synthetic Fe porphyrins have been extensively studied as ORR catalysts, but activity improvement is required. On the other hand, Fe porphyrins have been rarely shown to be efficient for the oxygen evolution reaction (OER). We herein report an enzyme-inspired Fe porphyrin 1 as an efficient catalyst for both ORR and OER. Complex 1, which bears a tethered imidazole for Fe binding, beats imidazole-free analogue 2, with an anodic shift of ORR half-wave potential by 160 mV and a decrease of OER overpotential by 150 mV to get the benchmark current density at 10 mA cm−2. Theoretical studies suggested that hydroxide attack to a formal FeV=O form the O−O bond. The axial imidazole can prevent the formation of trans HO-FeV=O, which is less effective to form O−O bond with hydroxide. As a practical demonstration, we assembled rechargeable Zn-air battery with 1, which shows equal performance to that with Pt/Ir-based materials. © 2021 Wiley-VCH GmbH

  • 2021 • 428
    Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation**
    Batchelor, T.A.A. and Löffler, T. and Xiao, B. and Krysiak, O.A. and Strotkötter, V. and Pedersen, J.K. and Clausen, C.M. and Savan, A. and Li, Y. and Schuhmann, W. and Rossmeisl, J. and Ludwig, Al.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: (2021)
    view abstract10.1002/anie.202014374

    Complex solid solutions (“high entropy alloys”), comprising five or more principal elements, promise a paradigm change in electrocatalysis due to the availability of millions of different active sites with unique arrangements of multiple elements directly neighbouring a binding site. Thus, strong electronic and geometric effects are induced, which are known as effective tools to tune activity. With the example of the oxygen reduction reaction, we show that by utilising a data-driven discovery cycle, the multidimensionality challenge raised by this catalyst class can be mastered. Iteratively refined computational models predict activity trends around which continuous composition-spread thin-film libraries are synthesised. High-throughput characterisation datasets are then used as input for refinement of the model. The refined model correctly predicts activity maxima of the exemplary model system Ag-Ir-Pd-Pt-Ru. The method can identify optimal complex-solid-solution materials for electrocatalytic reactions in an unprecedented manner. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

  • 2021 • 427
    Metal–Organic-Framework-Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction
    Liang, Z. and Guo, H. and Zhou, G. and Guo, K. and Wang, B. and Lei, H. and Zhang, W. and Zheng, H. and Apfel, U.-P. and Cao, R.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202016024

    Synthesizing molecule@support hybrids is appealing to improve molecular electrocatalysis. We report herein metal–organic framework (MOF)-supported Co porphyrins for the oxygen reduction reaction (ORR) with improved activity and selectivity. Co porphyrins can be grafted on MOF surfaces through ligand exchange. A variety of porphyrin@MOF hybrids were made using this method. Grafted Co porphyrins showed boosted ORR activity with large (>70 mV) anodic shift of the half-wave potential compared to ungrafted porphyrins. By using active MOFs for peroxide reduction, the number of electrons transferred per O2 increased from 2.65 to 3.70, showing significantly improved selectivity for the 4e ORR. It is demonstrated that H2O2 generated from O2 reduction at Co porphyrins is further reduced at MOF surfaces, leading to improved 4e ORR. As a practical demonstration, these hybrids were used as air electrode catalysts in Zn-air batteries, which exhibited equal performance to that with Pt-based materials. © 2021 Wiley-VCH GmbH

  • 2021 • 426
    Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination
    Zou, Y. and Hu, Y. and Uhrich, A. and Shen, Z. and Peng, B. and Ji, Z. and Muhler, M. and Zhao, G. and Wang, X. and Xu, X.
    APPLIED CATALYSIS B: ENVIRONMENTAL. Volume: 298 (2021)
    view abstract10.1016/j.apcatb.2021.120584

    We provide a distinct understanding on the role of oxygen vacancies (OVs) for visible light-triggered aerobic oxidation of alcohols via comparative studies on three kinds of Nb2O5, i.e., undoped, Ti-doped and Ce-doped Nb2O5. With benzyl alcohol and 5-hydroxymethylfurfural as representative alcohol substrates, we show that fast alcohol oxidation with high selectivity can be achieved on these doped Nb2O5 containing abundant OVs. However, the functionality of OVs is dependent on the properties of dopants as Ce-doped Nb2O5 exhibits a better performance than Ti-doped one. Investigations indicate that the Ce dopants incur little distortion to the structure of Nb2O5 and induce more accessible OVs than Ti dopants for the dissociative chemisorption of alcohol molecules which supports favorable interfacial electron migration process. The present work not only reveals the difference of oxygen vacancies caused by varied metal doping but provides a unique insight in the relation between OVs structure and photocatalytic alcohol oxidation. © 2021 Elsevier B.V.

  • 2021 • 425
    Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**
    Pedersen, J.K. and Clausen, C.M. and Krysiak, O.A. and Xiao, B. and Batchelor, T.A.A. and Löffler, T. and Mints, V.A. and Banko, L. and Arenz, M. and Savan, A. and Schuhmann, W. and Ludwig, Al. and Rossmeisl, J.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 60 (2021)
    view abstract10.1002/anie.202108116

    Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag–Pd, Ir–Pt, and Pd–Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

  • 2021 • 424
    Nitrogen and Oxygen Functionalization of Multi-walled Carbon Nanotubes for Tuning the Bifunctional Oxygen Reduction/Oxygen Evolution Performance of Supported FeCo Oxide Nanoparticles
    Kazakova, M.A. and Koul, A. and Golubtsov, G.V. and Selyutin, A.G. and Ishchenko, A.V. and Kvon, R.I. and Kolesov, B.A. and Schuhmann, W. and Morales, D.M.
    CHEMELECTROCHEM. Volume: (2021)
    view abstract10.1002/celc.202100556

    The combination of nanostructured transition metal oxides and carbon materials is a promising approach to obtain inexpensive, highly efficient, and stable bifunctional electrocatalysts for the oxygen reduction (ORR) and the oxygen evolution (OER) reactions. We present a strategy for improving the bifunctional ORR/OER activity of supported FeCoOx nanoparticles by tuning the properties of multi-walled carbon nanotubes (MWCNT) via nitrogen doping during their synthesis in the presence of ammonia and subsequent oxidative functionalization. In-depth structural characterization indicates that oxidative treatment provides fine control of the dispersion and localization of FeCoOx nanoparticles in MWCNT, while the optimal degree of nitrogen doping leads to increased bifunctional activity due to enhanced electrical conductivity as well as improved catalyst stability, in both OER and ORR conditions, for nanoparticles formed by two different synthesis routes. The findings reported can be strategically considered for the design of high-performance reversible ORR/OER electrocatalysts. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH

  • 2020 • 423
    A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion
    Luo, H. and Sohn, S.S. and Lu, W. and Li, L. and Li, X. and Soundararajan, C.K. and Krieger, W. and Li, Z. and Raabe, D.
    NATURE COMMUNICATIONS. Volume: 11 (2020)
    view abstract10.1038/s41467-020-16791-8

    Strong and ductile materials that have high resistance to corrosion and hydrogen embrittlement are rare and yet essential for realizing safety-critical energy infrastructures, hydrogen-based industries, and transportation solutions. Here we report how we reconcile these constraints in the form of a strong and ductile CoNiV medium-entropy alloy with face-centered cubic structure. It shows high resistance to hydrogen embrittlement at ambient temperature at a strain rate of 10−4 s−1, due to its low hydrogen diffusivity and the deformation twinning that impedes crack propagation. Moreover, a dense oxide film formed on the alloy’s surface reduces the hydrogen uptake rate, and provides high corrosion resistance in dilute sulfuric acid with a corrosion current density below 7 μA cm−2. The combination of load carrying capacity and resistance to harsh environmental conditions may qualify this multi-component alloy as a potential candidate material for sustainable and safe infrastructures and devices. © 2020, The Author(s).

  • 2020 • 422
    Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts
    Laudenschleger, D. and Ruland, H. and Muhler, M.
    NATURE COMMUNICATIONS. Volume: 11 (2020)
    view abstract10.1038/s41467-020-17631-5

    The heterogeneously catalysed reaction of hydrogen with carbon monoxide and carbon dioxide (syngas) to methanol is nearly 100 years old, and the standard methanol catalyst Cu/ZnO/Al2O3 has been applied for more than 50 years. Still, the nature of the Zn species on the metallic Cu0 particles (interface sites) is heavily debated. Here, we show that these Zn species are not metallic, but have a positively charged nature under industrial methanol synthesis conditions. Our kinetic results are based on a self-built high-pressure pulse unit, which allows us to inject selective reversible poisons into the syngas feed passing through a fixed-bed reactor containing an industrial Cu/ZnO/Al2O3 catalyst under high-pressure conditions. This method allows us to perform surface-sensitive operando investigations as a function of the reaction conditions, demonstrating that the rate of methanol formation is only decreased in CO2-containing syngas mixtures when pulsing NH3 or methylamines as basic probe molecules. © 2020, The Author(s).

  • 2020 • 421
    Effect of Oxygen on High-temperature Phase Equilibria in Ternary Ti-Al-Nb Alloys
    Distl, B. and Dehm, G. and Stein, F.
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE. Volume: 646 (2020)
    view abstract10.1002/zaac.202000098

    Alloys based on titanium aluminides received a lot of attention because of their capability to substitute Ni-based superalloys in high-temperature applications. However, the phase equilibria between the main microstructure constituents (αTi), (βTi), γ (TiAl) and α2(Ti3Al) can be shifted significantly by impurities such as oxygen especially at high temperatures. This behavior is investigated on the tie-triangle (αTi) + (βTi) + γ (TiAl) in the ternary Ti-Al-Nb system at 1300 °C. An explanation for this behavior could be the occupation of octahedral voids by impurities in certain phases. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 420
    Dual-Heteroatom-Doped Reduced Graphene Oxide Sheets Conjoined CoNi-Based Carbide and Sulfide Nanoparticles for Efficient Oxygen Evolution Reaction
    Zakaria, M.B. and Zheng, D. and Apfel, U.-P. and Nagata, T. and Kenawy, E.-R.S. and Lin, J.
    ACS APPLIED MATERIALS AND INTERFACES. Volume: 12 (2020)
    view abstract10.1021/acsami.0c06141

    Intensive research is being conducted into highly efficient and cheap nanoscale materials for the electrocatalytic oxidation of water. In this context, we built heterostructures of multilayered CoNi-cyanide bridged coordination (CoNi-CP) nanosheets and graphene oxide (GO) sheets (CoNi-CP/GO) as a source for heterostructured functional electrodes. The layered CoNi-CP/GO hybrid components heated in nitrogen gas (N2) at 450 °C yield CoNi-based carbide (CoNi-C) through thermal decomposition of CoNi-CP, while GO is converted into reduced GO (rGO) to finally form a CoNi-C/rGO-450 composite. The CoNi-C/rGO-450 composite shows a reasonable efficiency for oxygen evolution reaction (OER) through water oxidations in alkaline solution. Meanwhile, regulated annealing of CoNi-CP/GO in N2 with thiourea at 450 and 550 °C produces CoNi-based sulfide (CoNi-S) rather than CoNi-C between rGO sheets co-doped by nitrogen (N) and sulfur (S) heteroatoms (NS-rGO) to form CoNi-S/NS-rGO-450 and CoNi-S/NS-rGO-550 composites, respectively. The CoNi-S/NS-rGO-550 shows the best efficiency for electrocatalytic OER among all electrodes with an overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of 79.5 mV dec-1. By applying the iR compensation to remove resistance of the solution (2.1 ω), the performance is further improved to achieve a current density of 10 mA cm-2 at an overpotential of 274 mV with a Tafel slope of 70.5 mV dec-1. This result is expected to be a promising electrocatalyst compared to the currently used electrocatalysts and a step for fuel cell applications in the future. © 2020 American Chemical Society.

  • 2020 • 419
    Plasmachemical Trace-Oxygen Removal in a Coke Oven Gas with a Coaxial Packed-Bed-DBD Reactor
    Nitsche, T. and Budt, M. and Apfel, U.-P.
    CHEMIE-INGENIEUR-TECHNIK. Volume: 92 (2020)
    view abstract10.1002/cite.202000052

    The trace-O2 removal in coke oven gas, which enables better utilization of its contained H2, is investigated with combinations of atmospheric nonthermal plasma and a Pt/γ-Al2O3 catalyst. Herein it is shown that a coaxial packed-bed dielectric barrier discharge (DBD) reactor removes up to 80 % O2 in a model coke oven gas. Along this line, the H2 content and the usage of Al2O3 granules in the plasma zone have been identified as major factors for the plasmachemical trace-O2 conversion. In contrast to the Pt/γ-Al2O3 catalyst, nonthermal plasma converts trace O2 at coke oven gas temperatures below 100 °C. © 2020 The Authors. Published by Wiley-VCH GmbH

  • 2020 • 418
    Direct Atomic-Level Imaging of Zeolites: Oxygen, Sodium in Na-LTA and Iron in Fe-MFI
    Mayoral, A. and Zhang, Q. and Zhou, Y. and Chen, P. and Ma, Y. and Monji, T. and Losch, P. and Schmidt, W. and Schüth, F. and Hirao, H. and Yu, J. and Terasaki, O.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 59 (2020)
    view abstract10.1002/anie.202006122

    Zeolites are becoming more versatile in their chemical functions through rational design of their frameworks. Therefore, direct imaging of all atoms at the atomic scale, basic units (Si, Al, and O), heteroatoms in the framework, and extra-framework cations, is needed. TEM provides local information at the atomic level, but the serious problem of electron-beam damage needs to be overcome. Herein, all framework atoms, including oxygen and most of the extra-framework Na cations, are successfully observed in one of the most electron-beam-sensitive and lowest framework density zeolites, Na-LTA. Zeolite performance, for instance in catalysis, is highly dependent on the location of incorporated heteroatoms. Fe single atomic sites in the MFI framework have been imaged for the first time. The approach presented here, combining image analysis, electron diffraction, and DFT calculations, can provide essential structural keys for tuning catalytically active sites at the atomic level. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

  • 2020 • 417
    HMDSO-Based Thin Plasma Polymers as Corrosion Barrier Against NaOH Solution
    Jaritz, M. and Hopmann, C. and Wilski, S. and Kleines, L. and Rudolph, M. and Awakowicz, P. and Dahlmann, R.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE. Volume: 29 (2020)
    view abstract10.1007/s11665-020-04821-x

    HMDSO-based films with excellent corrosion barrier properties against strong alkaline solutions were deposited on chemically non-resistant SiOx barrier coatings, which were previously applied on polished gold-coated Si-Wafers and PET films for coating analysis. The plasma process parameters are seen to have a strong influence on the achievable corrosion barrier properties of the plasma polymers. Coatings, which were applied in a pulsed microwave plasma with low mean power input, exhibit a substantially higher resistance against NaOH aqueous solution in electrochemical tests than those applied in higher energy plasmas. An analysis of the coatings revealed that the great difference in chemical resistivity of the investigated coatings can be explained by their chemical composition as well as their nano-porosity and surface topography. XPS measurements indicate that a higher organic content in the films contributes to their chemical resistivity. FTIR measurements showed that an ordered Si-O-Si network with methyl groups, which promote steric shielding, lead to superior corrosion resistance. Furthermore, a correlation of protective performance and nano-porosity was found in cyclic voltammetry measurements. Coatings with good corrosion protection proved to be initially pore free and even after 30 min of exposure to NaOH, an open pore surface of only 2% can be measured. Finally, measurements of the oxygen transmission rate (OTR) of coated PET substrates showed that the barrier of a coating system comprising a non-resistant barrier layer and a protective top coat can withstand up to at least 90 min of exposure to hot NaOH solution without significant loss in barrier performance. After this, the barrier of the system is gradually reduced. To slow down this reduction process, a multilayer approach proved to be effective. © 2020, ASM International.

  • 2020 • 416
    The magnetic asymmetry effect in geometrically asymmetric capacitively coupled radio frequency discharges operated in Ar/O2
    Oberberg, M. and Berger, B. and Buschheuer, M. and Engel, D. and Wölfel, C. and Eremin, D. and Lunze, J. and Brinkmann, R.P. and Awakowicz, P. and Schulze, J.
    PLASMA SOURCES SCIENCE AND TECHNOLOGY. Volume: 29 (2020)
    view abstract10.1088/1361-6595/ab9b31

    Previous studies in low pressure magnetized capacitively coupled radio frequency (RF) plasmas operated in argon with optimized geometric reactor symmetry have shown that the magnetic asymmetry effect (MAE) allows to control the particle flux energy distributions at the electrodes, the plasma symmetry, and the DC self-bias voltage by tuning the magnetron-like magnetic field adjacent to one electrode (Oberberg et al 2019 Plasma Sources Sci. Technol. 28 115021; Oberberg et al 2018 Plasma Sources Sci. Technol. 27 105018). In this way non-linear electron resonance heating (NERH) induced via the self-excitation of the plasma series resonance (PSR) was also found to be controllable. Such plasma sources are frequently used for reactive RF magnetron sputtering, but the discharge conditions used for such applications are significantly different compared to those studied previously. A high DC self-bias voltage (generated via a geometric reactor asymmetry) is required to realize a sufficiently high ion bombardment energy at the target electrode and a reactive gas must be added to deposit ceramic compound layers. Thus in this work, the MAE is investigated experimentally in a geometrically asymmetric capacitively coupled RF discharge driven at 13.56 MHz and operated in mixtures of argon and oxygen. The DC self-bias, the symmetry parameter, the time resolved RF current, the plasma density, and the mean ion energy at the grounded electrode are measured as a function of the driving voltage amplitude and the magnetic field at the powered electrode. Results obtained in pure argon discharges are compared to measurements performed in argon with reactive gas admixture. The results reveal a dominance of the geometrical over the magnetic asymmetry. The DC self-bias voltage as well as the symmetry parameter are found to be only weakly influenced by a change of the magnetic field compared to previous results obtained in a geometrically more symmetric reactor. Nevertheless, the magnetic field is found to provide the opportunity to control NERH magnetically also in geometrically asymmetric reactors. Adding oxygen does not alter these discharge properties significantly compared to a pure argon discharge. © 2020 The Author(s). Published by IOP Publishing Ltd.

  • 2020 • 415
    Insights into the Formation, Chemical Stability, and Activity of Transient NiyP@NiO x Core-Shell Heterostructures for the Oxygen Evolution Reaction
    Wilde, P. and Dieckhöfer, S. and Quast, T. and Xiang, W. and Bhatt, A. and Chen, Y.-T. and Seisel, S. and Barwe, S. and Andronescu, C. and Li, T. and Schuhmann, W. and Masa, J.
    ACS APPLIED ENERGY MATERIALS. Volume: 3 (2020)
    view abstract10.1021/acsaem.9b02481

    NiyP emerged as a highly active precatalyst for the alkaline oxygen evolution reaction where structural changes play a crucial role for its catalytic performance. We probed the chemical stability of NiyP in 1 M KOH at 80 °C and examined how exposure up to 168 h affects its structure and catalytic performance. We observed selective P-leaching and formation of NiyP/NiOx core-shell heterostructures, where shell thickness increases with ageing time, which is detrimental for the activity. By tuning the particle size, we demonstrate that prevention of complete catalyst oxidation is essential to preserve the outstanding electrochemical performance of NiyP in alkaline media. © 2020 American Chemical Society.

  • 2020 • 414
    Mapping the mechanical properties in nitride coatings at the nanometer scale
    Zhang, Z. and Chen, Z. and Holec, D. and Liebscher, C.H. and Koutná, N. and Bartosik, M. and Zheng, Y. and Dehm, G. and Mayrhofer, P.H.
    ACTA MATERIALIA. Volume: 194 (2020)
    view abstract10.1016/j.actamat.2020.04.024

    We report on a multilayered structure comprising of rock-salt (rs) structured CrN layers of constant thickness and AlN layers of varying thicknesses, which surprisingly enables the growth of metastable zinc-blende (zb) AlN layers for certain layer-thickness combinations. The multilayer exhibits an atomic and electronic structure gradient as revealed using advanced electron microscopy and electron spectroscopy. Gradient structures are also accompanied by a modulation of the chemical compositions. A combined experimental analysis based on valence electrons and inner shell electrons allowed mapping the mechanical properties of the multilayer at the nanometer scale and further unveiled the effect of oxygen impurities on the bulk modulus. We found that the presence of oxygen impurities causes a remarkable reduction of the bulk modulus of rs-CrN while having no significant effect on the bulk modulus of the stable wurtzite structure wz-AlN layers. The findings are unambiguously validated by theoretical calculations using density functional theory. © 2020 Acta Materialia Inc.

  • 2020 • 413
    Light-controlled imaging of biocatalytic reactionsviascanning photoelectrochemical microscopy for multiplexed sensing
    Riedel, M. and Ruff, A. and Schuhmann, W. and Lisdat, F. and Conzuelo, F.
    CHEMICAL COMMUNICATIONS. Volume: 56 (2020)
    view abstract10.1039/d0cc00777c

    A light-controlled multiplexing platform has been developed on the basis of a quantum dot-sensitized inverse opal TiO2electrode with integrated biocatalytic reactions. Spatially resolved illumination enables multiplexed sensing and imaging of enzymatic oxidation reactions at relatively negative applied potentials. © The Royal Society of Chemistry 2020.

  • 2020 • 412
    Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: Effect of structure and composition on oxygen reduction activity
    Manjón, A.G. and Löffler, T. and Meischein, M. and Meyer, H. and Lim, J. and Strotkötter, V. and Schuhmann, W. and Ludwig, Al. and Scheu, C.
    NANOSCALE. Volume: 12 (2020)
    view abstract10.1039/d0nr07632e

    Complex solid solution electrocatalysts (often called high-entropy alloys) present a new catalyst class with highly promising features due to the interplay of multi-element active sites. One hurdle is the limited knowledge about structure-activity correlations needed for targeted catalyst design. We prepared Cr-Mn-Fe-Co-Ni nanoparticles by magnetron sputtering a high entropy Cantor alloy target simultaneously into an ionic liquid library. The synthesized nanoparticles have a narrow size distribution but different sizes (from 1.3 ± 0.1 nm up to 2.6 ± 0.3 nm), different crystallinity (amorphous, face-centered cubic or body-centered cubic) and composition (i.e. high Mn versus low Mn content). The Cr-Mn-Fe-Co-Ni complex solid solution nanoparticles possess an unprecedented intrinsic electrocatalytic activity for the oxygen reduction reaction in alkaline media, some of them even surpassing that of Pt. The highest intrinsic activity was obtained for body-centered cubic nanoparticles with a low Mn and Fe content which were synthesized using the ionic liquid 1-etyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Emimi][(Tf)2N]. This journal is © The Royal Society of Chemistry.

  • 2020 • 411
    From Precursor Chemistry to Gas Sensors: Plasma-Enhanced Atomic Layer Deposition Process Engineering for Zinc Oxide Layers from a Nonpyrophoric Zinc Precursor for Gas Barrier and Sensor Applications
    Mai, L. and Mitschker, F. and Bock, C. and Niesen, A. and Ciftyurek, E. and Rogalla, D. and Mickler, J. and Erig, M. and Li, Z. and Awakowicz, P. and Schierbaum, K. and Devi, A.
    SMALL. Volume: 16 (2020)
    view abstract10.1002/smll.201907506

    The identification of bis-3-(N,N-dimethylamino)propyl zinc ([Zn(DMP)2], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed. The resulting ZnO thin films are uniform, smooth, stoichiometric, and highly transparent. The deposition on polyethylene terephthalate (PET) at 60 °C results in dense and compact ZnO layers for a thickness as low as 7.5 nm with encouraging oxygen transmission rates (OTR) compared to the bare PET substrates. As a representative application of the ZnO layers, the gas sensing properties are investigated. A high response toward NO2 is observed without cross-sensitivities against NH3 and CO. Thus, the new PEALD process employing BDMPZ has the potential to be a safe substitute to the commonly used DEZ processes. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2020 • 410
    Spray-Flame-Prepared LaCo1–xFexO3 Perovskite Nanoparticles as Active OER Catalysts: Influence of Fe Content and Low-Temperature Heating
    Alkan, B. and Medina, D. and Landers, J. and Heidelmann, M. and Hagemann, U. and Salamon, S. and Andronescu, C. and Wende, H. and Schulz, C. and Schuhmann, W. and Wiggers, H.
    CHEMELECTROCHEM. Volume: 7 (2020)
    view abstract10.1002/celc.201902051

    Spray-flame synthesis was used to produce high-surface-area perovskite electrocatalysts with high phase purity, minimum surface contamination, and high electrochemical stability. In this study, as-prepared LaCo1–xFexO3 perovskite nanoparticles (x=0.2, 0.3, and 0.4) were found to contain a high degree of combustion residuals, and mostly consist of both, stoichiometric and oxygen-deficient perovskite phases. Heating them at moderate temperature (250 °C) in oxygen could remove combustion residuals and increases the content of stoichiometric perovskite while preventing particle growth. A higher surface crystallinity was observed with increasing iron content coming along with a rise in oxygen deficient phases. With heat treatment, OER activity and stability of perovskites improved at 30 and 40 at.% Fe while deteriorating at 20 at.% Fe. This study highlights spray-flame synthesis as a promising technique to synthesize highly active nanoscale perovskite catalysts with improved OER activity. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 409
    Differentiation between Carbon Corrosion and Oxygen Evolution Catalyzed by NixB/C Hybrid Electrocatalysts in Alkaline Solution using Differential Electrochemical Mass Spectrometry
    Möller, S. and Barwe, S. and Dieckhöfer, S. and Masa, J. and Andronescu, C. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 7 (2020)
    view abstract10.1002/celc.202000697

    Carbon is a frequently used electrode material and an important additive in catalyst films. Its corrosion is often reported during electrocatalysis at high anodic potentials, especially in acidic electrolyte. Investigation of the carbon corrosion in alkaline environment is difficult due to the CO2/CO32− equilibrium. We report the on-line determination of electrolysis products generated on NixB/C hybrid electrocatalysts in alkaline electrolyte at anodic potentials using differential electrochemical mass spectrometry (DEMS). NixB/C catalyst films were obtained from mixtures containing different ratios of NiXB and benzoxazine monomers followed by polymerization and pyrolysis. The impact of the composition of the electrocatalyst on the dominant electrolysis process allows to distinguish between the oxygen evolution reaction and carbon corrosion using DEMS results as well as the catalyst surface composition evaluated from X-ray photoelectron spectra. At the imposed highly oxidative conditions, an increasing amount of NixB in the electrocatalyst leads to a suppression of carbon corrosion. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 408
    Does plasma-induced methionine degradation provide alternative reaction paths for cell death?
    Deichmöller, J. and Kogelheide, F. and Murke, S. and Hüther, D. and Schwaab, G. and Awakowicz, P. and Havenith, M.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 53 (2020)
    view abstract10.1088/1361-6463/ab8cea

    Cold atmospheric pressure plasma is a promising technology for surface wound healing. Its antimicrobial effect is correlated to chemical modifications of methionine (Met) caused by reactive oxygen and nitrogen species. To minimize unwanted side effects on healthy tissue it is of utmost importance to unravel the origin of the antimicrobial plasma effects. In this study, we employed confocal Raman spectroscopy on Met and Met glutathione (GSH) mixtures to obtain a chemical picture of how plasma affects Met as a function of treatment time (t = 0-600 s). We were able to observe a hitherto unknown reaction path that leads to a disulfide (MSSM) via a thiol (MSH) in addition to the well-known Met degradation route involving sulfur oxidation to methionine disulfide (Met(O)) and methionine sulfone (Met(O2)). We propose that the anti-microbial effect of plasma treatment is caused by two alternative reaction routes. The first one leads to protein damage caused by sulfur bridge formation (S-S). A second pathway is provided by MSH and dimethyl sulfoxide precursor species (detected via their characteristic Raman bands) that cause DNA damage due to strand breaks. Addition of GSH shifts the Met decay in time by 70 s while the general reaction pathways are preserved. © 2020 IOP Publishing Ltd.

  • 2020 • 407
    Synergistic Effect of Molybdenum and Tungsten in Highly Mixed Carbide Nanoparticles as Effective Catalysts in the Hydrogen Evolution Reaction under Alkaline and Acidic Conditions
    Fu, Q. and Peng, B. and Masa, J. and Chen, Y.-T. and Xia, W. and Schuhmann, W. and Muhler, M.
    CHEMELECTROCHEM. Volume: 7 (2020)
    view abstract10.1002/celc.202000047

    Monometallic Mo and W carbides as well as highly mixed (Mo,W) carbides with various Mo/W ratios were synthesized directly on oxygen-functionalized carbon nanotubes (OCNTs), and used as noble-metal-free electrocatalysts in the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. A purely orthorhombic structure was found in both monometallic and mixed carbide samples by X-ray diffraction. Transmission electron microscopy images showed that the carbide particles were highly dispersed on the OCNTs with well-controlled particle size. The homogeneous distribution of Mo and W in the carbides was confirmed by elemental mapping. (Mo,W)2C/OCNT with a Mo/W ratio of 3 : 1 showed the lowest overpotential to reach a current density of 10 mA/cm2 (87 mV in 0.1 M KOH and 92 mV in 0.5 M H2SO4), and the smallest Tafel slope of 34 mV/dec. Long-term stability under both alkaline and acidic conditions was demonstrated for 24 h. Our results revealed that an optimal amount of W in the mixed carbide can significantly improve its performance in the HER following the Tafel reaction pathway, most likely due to the weakened Mo−Hads bond. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 406
    Determination of atomic oxygen state densities in a double inductively coupled plasma using optical emission and absorption spectroscopy and probe measurements
    Fiebrandt, M. and Bibinov, N. and Awakowicz, P.
    PLASMA SOURCES SCIENCE AND TECHNOLOGY. Volume: 29 (2020)
    view abstract10.1088/1361-6595/ab7cbe

    A collisional radiative model for fast estimation and monitoring of atomic oxygen ground and excited state densities and fluxes in varying Ar:O2 mixtures is developed and applied in a double inductively coupled plasma source at a pressure of 5 Pa and incident power of 500 W. The model takes into account measured line intensities of 130.4 nm, 135.6 nm, 557.7 nm, and 777.5 nm, the electron densities and electron energy distribution functions determined using a Langmuir probe and multipole resonance probe as well as the state densities of the first four excited states of argon measured with the branching fraction method and compared to tunable diode laser absorption spectroscopy. The influence of cascading and self absorption is included and the validity of the used cross sections and reaction rates is discussed in detail. The determined atomic oxygen state densities are discussed for their plausibility, sources of error, and compared to other measurements. Furthermore, the results of the model are analyzed to identify the application regimes of much simpler models, which could be used more easily for process control, e.g. actinometry. © 2020 The Author(s). Published by IOP Publishing Ltd.

  • 2020 • 405
    The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions
    Morales, D.M. and Kazakova, M.A. and Purcel, M. and Masa, J. and Schuhmann, W.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY. Volume: 24 (2020)
    view abstract10.1007/s10008-020-04667-2

    Successful design of reversible oxygen electrocatalysts does not only require to consider their activity towards the oxygen reduction (ORR) and the oxygen evolution reactions (OER), but also their electrochemical stability at alternating ORR and OER operating conditions, which is important for potential applications in reversible electrolyzers/fuel cells or metal/air batteries. We show that the combination of catalyst materials containing stable ORR active sites with those containing stable OER active sites may result in a stable ORR/OER catalyst if each of the active components can satisfy the current demand of their respective reaction. We compare the ORR/OER performances of oxides of Mn (stable ORR active sites), Fe (stable OER active sites), and bimetallic Mn0.5Fe0.5 (reversible ORR/OER catalyst) supported on oxidized multi-walled carbon nanotubes. Despite the instability of Mn and Fe oxide for the OER and the ORR, respectively, Mn0.5Fe0.5 exhibits high stability for both reactions. © 2020, The Author(s).

  • 2020 • 404
    Probing catalytic surfaces by correlative scanning photoemission electron microscopy and atom probe tomography
    Schweinar, K. and Nicholls, R.L. and Rajamathi, C.R. and Zeller, P. and Amati, M. and Gregoratti, L. and Raabe, D. and Greiner, M. and Gault, B. and Kasian, O.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 8 (2020)
    view abstract10.1039/c9ta10818a

    The chemical composition and the electronic state of the surface of alloys or mixed oxides with enhanced electrocatalytic properties are usually heterogeneous at the nanoscale. The non-uniform distribution of the potential across their surface affects both activity and stability. Studying such heterogeneities at the relevant length scale is crucial for understanding the relationships between structure and catalytic behaviour. Here, we demonstrate an experimental approach combining scanning photoemission electron microscopy and atom probe tomography performed at identical locations to characterise the surface's structure and oxidation states, and the chemical composition of the surface and sub-surface regions. Showcased on an Ir-Ru thermally grown oxide, an efficient catalyst for the anodic oxygen evolution reaction, the complementary techniques yield consistent results in terms of the determined surface oxidation states and local oxide stoichiometry. Significant chemical heterogeneities in the sputter-deposited Ir-Ru alloy thin films govern the oxide's chemistry, observed after thermal oxidation both laterally and vertically. While the oxide grains have a composition of Ir0.94Ru0.06O2, the composition in the grain boundary region varies from Ir0.70Ru0.30O2 to Ir0.40Ru0.60O2 and eventually to Ir0.75Ru0.25O2 from the top surface into the depth. The influence of such compositional non-uniformities on the catalytic performance of the material is discussed, along with possible engineering levers for the synthesis of more stable and reactive mixed oxides. The proposed method provides a framework for investigating materials of interest in the field of electrocatalysis and beyond. This journal is © The Royal Society of Chemistry.

  • 2020 • 403
    CoFe-OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction
    Sliozberg, K. and Aniskevich, Y. and Kayran, U. and Masa, J. and Schuhmann, W.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE. Volume: 234 (2020)
    view abstract10.1515/zpch-2019-1466

    Cobalt-iron double hydroxide (CoFe-OH) films were electrochemically deposited on 3D Ni foam electrodes for the oxygen evolution reaction (OER). The dependence of the OER activity on film composition and thickness was evaluated, which revealed an optimal Fe:Co ratio of about 1:2.33. The composition of the catalyst film was observed to vary with film thickness. The electrodeposition parameters were carefully controlled to yield microstructured Ni-foam decorated with CoFe-OH films of controlled thickness and composition. The most active electrode exhibited an overpotential as low as 360 mV OER at an industrial scale current density of 400 mA cm-2 that remained stable for at least 320 h. This work contributes towards the fabrication of practical electrodes with the focus on the development of stable electrodes for electrocatalytic oxygen evolution at high current densities. © 2020 Wolfgang Schuhmann et al., published by De Gruyter, Berlin/Boston 2020.

  • 2020 • 402
    Enantioselective epoxidation by flavoprotein monooxygenases supported by organic solvents
    Eggerichs, D. and Mügge, C. and Mayweg, J. and Apfel, U.-P. and Tischler, D.
    CATALYSTS. Volume: 10 (2020)
    view abstract10.3390/catal10050568

    Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases composed of a nicotinamide adenine dinucleotide (NADH)-dependent flavin adenine dinucleotide (FAD)-reductase (StyB or IndB) and a monooxygenase (StyA or IndA). The latter uses reduced FAD to activate oxygen and to oxygenate the substrate while releasing water. We circumvented the need for the reductase by direct FAD reduction in solution using the NAD(P)H-mimic 1-benzyl-1,4-dihydronicotinamide (BNAH) to fuel monooxygenases without NADH requirement. Herein, we report on the hitherto unknown solvent tolerance for the indole monooxygenase from Gemmobacter nectariphilus DSM15620 (GnIndA) and the styrene monooxygenase from Gordonia rubripertincta CWB2 (GrStyA). These enzymes were shown to convert bulky and rather hydrophobic styrene derivatives in the presence of organic cosolvents. Subsequently, BNAH-driven biotransformation was furthermore optimized with regard to the applied cosolvent and its concentration as well as FAD and BNAH concentration. We herein demonstrate that GnIndA and GrStyA enable selective epoxidations of allylic double bonds (up to 217 mU mg–1) in the presence of organic solvents such as tetrahydrofuran, acetonitrile, or several alcohols. Notably, GnIndA was found to resist methanol concentrations up to 25 vol.%. Furthermore, a diverse substrate preference was determined for both enzymes, making their distinct use very interesting. In general, our results seem representative for many IMOs as was corroborated by in silico mutagenetic studies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2020 • 401
    Controlling the Number of Branches and Surface Facets of Pd-Core Ru-Branched Nanoparticles to Make Highly Active Oxygen Evolution Reaction Electrocatalysts
    Myekhlai, M. and Benedetti, T.M. and Gloag, L. and Poerwoprajitno, A.R. and Cheong, S. and Schuhmann, W. and Gooding, J.J. and Tilley, R.D.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 26 (2020)
    view abstract10.1002/chem.202003561

    Producing stable but active materials is one of the enduring challenges in electrocatalysis and other types of catalysis. Producing branched nanoparticles is one potential solution. Controlling the number of branches and branch size of faceted branched nanoparticles is one of the major synthetic challenges to achieve highly active and stable nanocatalysts. Herein, we use a cubic-core hexagonal-branch mechanism to synthesize branched Ru nanoparticles with control over the size and number of branches. This structural control is the key to achieving high exposure of active {10–11} facets and optimum number of Ru branches that enables improved catalytic activity for oxygen evolution reaction while maintaining high stability. © 2020 Wiley-VCH GmbH

  • 2020 • 400
    Factors Governing the Activity of α-MnO2 Catalysts in the Oxygen Evolution Reaction: Conductivity versus Exposed Surface Area of Cryptomelane
    Heese-Gärtlein, J. and Morales, D.M. and Rabe, A. and Bredow, T. and Schuhmann, W. and Behrens, M.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 26 (2020)
    view abstract10.1002/chem.201905090

    Cryptomelane (α-(K)MnO2) powders were synthesized by different methods leading to only slight differences in their bulk crystal structure and chemical composition, while the BET surface area and the crystallite size differed significantly. Their performance in the oxygen evolution reaction (OER) covered a wide range and their sequence of increasing activity differed when electrocatalysis in alkaline electrolyte and chemical water oxidation using Ce4+ were compared. The decisive factors that explain this difference were identified in the catalysts’ microstructure. Chemical water oxidation activity is substantially governed by the exposed surface area, while the electrocatalytic activity is determined largely by the electric conductivity, which was found to correlate with the particle morphology in terms of needle length and aspect ratio in this sample series. This correlation is rather explained by an improved conductivity due to longer needles than by structure sensitivity as was supported by reference experiments using H2O2 decomposition and carbon black as additive. The most active catalyst R-cryptomelane reached a current density of 10 mA cm−2 at a potential 1.73 V without, and at 1.71 V in the presence of carbon black. The improvement was significantly higher for the catalyst with lower initial activity. However, the materials showed a disappointing catalytic stability during alkaline electrochemical OER, whereas the crystal structure was found to be stable at working conditions. © 2020 The Authors. Published by Wiley-VCH GmbH

  • 2020 • 399
    Comparative proteomic analysis of osteogenic differentiated human adipose tissue and bone marrow-derived stromal cells
    Dadras, M. and May, C. and Wagner, J.M. and Wallner, C. and Becerikli, M. and Dittfeld, S. and Serschnitzki, B. and Schilde, L. and Guntermann, A. and Sengstock, C. and Köller, M. and Seybold, D. and Geßmann, J. and Schildhauer, T.A. and Lehnhardt, M. and Marcus, K. and Behr, B.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE. Volume: 24 (2020)
    view abstract10.1111/jcmm.15797

    Mesenchymal stromal cells are promising candidates for regenerative applications upon treatment of bone defects. Bone marrow-derived stromal cells (BMSCs) are limited by yield and donor morbidity but show superior osteogenic capacity compared to adipose-derived stromal cells (ASCs), which are highly abundant and easy to harvest. The underlying reasons for this difference on a proteomic level have not been studied yet. Human ASCs and BMSCs were characterized by FACS analysis and tri-lineage differentiation, followed by an intraindividual comparative proteomic analysis upon osteogenic differentiation. Results of the proteomic analysis were followed by functional pathway analysis. 29 patients were included with a total of 58 specimen analysed. In these, out of 5148 identified proteins 2095 could be quantified in >80% of samples of both cell types, 427 in >80% of ASCs only and 102 in >80% of BMSCs only. 281 proteins were differentially regulated with a fold change of >1.5 of which 204 were higher abundant in BMSCs and 77 in ASCs. Integrin cell surface interactions were the most overrepresented pathway with 5 integrins being among the proteins with highest fold change. Integrin 11a, a known key protein for osteogenesis, could be identified as strongly up-regulated in BMSC confirmed by Western blotting. The integrin expression profile is one of the key distinctive features of osteogenic differentiated BMSCs and ASCs. Thus, they represent a promising target for modifications of ASCs aiming to improve their osteogenic capacity and approximate them to that of BMSCs. © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd

  • 2020 • 398
    Trivalent iron rich CoFe layered oxyhydroxides for electrochemical water oxidation
    Weiß, S. and Ertl, M. and Varhade, S.D. and Radha, A.V. and Schuhmann, W. and Breu, J. and Andronescu, C.
    ELECTROCHIMICA ACTA. Volume: 350 (2020)
    view abstract10.1016/j.electacta.2020.136256

    Layered double hydroxides (LDHs) are presently among the best-performing oxygen evolution reaction (OER) electrocatalysts in alkaline media. The high activity of LDHs is due to synergistic effects between two transition metals as well as the layered structure which facilitates electron transfer. Because of a perfect match with the size of interlayer carbonate a ratio of 2:1 for the di- and tri-valent octahedral cations is energetically preferred. Here we present a strategy, where first mixed valent (Co2+ 1-zFe2+ z)4 Fe3+ 2 - LDHs, with z values between 0 and 0.75 are synthesized, which are subsequently oxidized to Co2+Fe3+ LDH-type layered (oxy)hydroxides with an unusual high trivalent Fe content. Characterization of the chemically oxidized materials using bulk and surface techniques demonstrated the successful synthesis of LDH-like trivalent iron rich (Co2+)4-4z (Fe3+)2+4z (oxy)hydroxides with a final Fe content ranging from 33.3 to 83.3%. Current densities of up to 200 mA cm−2 were obtained at potentials lower than 1.7 V vs. RHE for (Co2+)4-4z (Fe3+)2+4z (oxy)hydroxides containing a maximum of 80% Fe. © 2020 Elsevier Ltd

  • 2020 • 397
    The importance of nanoscale confinement to electrocatalytic performance
    Wordsworth, J. and Benedetti, T.M. and Alinezhad, A. and Tilley, R.D. and Edwards, M.A. and Schuhmann, W. and Gooding, J.J.
    CHEMICAL SCIENCE. Volume: 11 (2020)
    view abstract10.1039/c9sc05611d

    Electrocatalytic nanoparticles that mimic the three-dimensional geometric architecture of enzymes where the reaction occurs down a substrate channel isolated from bulk solution, referred to herein as nanozymes, were used to explore the impact of nano-confinement on electrocatalytic reactions. Surfactant covered Pt-Ni nanozyme nanoparticles, with Ni etched from the nanoparticles, possess a nanoscale channel in which the active sites for electrocatalysis of oxygen reduction are located. Different particle compositions and etching parameters allowed synthesis of nanoparticles with different average substrate channel diameters that have varying amounts of nano-confinement. The results showed that in the kinetically limited regime at low overpotentials, the smaller the substrate channels the higher the specific activity of the electrocatalyst. This is attributed to higher concentrations of protons, relative to bulk solution, required to balance the potential inside the nano-confined channel. However, at higher overpotentials where limitation by mass transport of oxygen becomes important, the nanozymes with larger substrate channels showed higher electrocatalytic activity. A reaction-diffusion model revealed that the higher electrocatalytic activity at low overpotentials with smaller substrate channels can be explained by the higher concentration of protons. The model suggests that the dominant mode of mass transport to achieve these high concentrations is by migration, exemplifying how nano-confinement can be used to enhance reaction rates. Experimental and theoretical data show that under mass transport limiting potentials, the nano-confinement has no effect and the reaction only occurs at the entrance of the substrate channel at the nanoparticle surface. © The Royal Society of Chemistry.

  • 2020 • 396
    Trimetallic Mn-Fe-Ni Oxide Nanoparticles Supported on Multi-Walled Carbon Nanotubes as High-Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media
    Morales, D.M. and Kazakova, M.A. and Dieckhöfer, S. and Selyutin, A.G. and Golubtsov, G.V. and Schuhmann, W. and Masa, J.
    ADVANCED FUNCTIONAL MATERIALS. Volume: 30 (2020)
    view abstract10.1002/adfm.201905992

    Discovering precious metal-free electrocatalysts exhibiting high activity and stability toward both the oxygen reduction (ORR) and the oxygen evolution (OER) reactions remains one of the main challenges for the development of reversible oxygen electrodes in rechargeable metal–air batteries and reversible electrolyzer/fuel cell systems. Herein, a highly active OER catalyst, Fe0.3Ni0.7OX supported on oxygen-functionalized multi-walled carbon nanotubes, is substantially activated into a bifunctional ORR/OER catalyst by means of additional incorporation of MnOX. The carbon nanotube-supported trimetallic (Mn-Ni-Fe) oxide catalyst achieves remarkably low ORR and OER overpotentials with a low reversible ORR/OER overvoltage of only 0.73 V, as well as selective reduction of O2 predominantly to OH−. It is shown by means of rotating disk electrode and rotating ring disk electrode voltammetry that the combination of earth-abundant transition metal oxides leads to strong synergistic interactions modulating catalytic activity. The applicability of the prepared catalyst for reversible ORR/OER electrocatalysis is evaluated by means of a four-electrode configuration cell assembly comprising an integrated two-layer bifunctional ORR/OER electrode system with the individual layers dedicated for the ORR and the OER to prevent deactivation of the ORR activity as commonly observed in single-layer bifunctional ORR/OER electrodes after OER polarization. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2020 • 395
    Origin of Laser-Induced Colloidal Gold Surface Oxidation and Charge Density, and Its Role in Oxidation Catalysis
    Ziefuß, A.R. and Haxhiaj, I. and Müller, S. and Gharib, M. and Gridina, O. and Rehbock, C. and Chakraborty, I. and Peng, B. and Muhler, M. and Parak, W.J. and Barcikowski, S. and Reichenberger, S.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 124 (2020)
    view abstract10.1021/acs.jpcc.0c06257

    Laser fragmentation in liquids (LFL) allows the synthesis of fully inorganic, ultrasmall gold nanoparticles, usAu NPs (<3 nm). Although the general method is well established, there is a lack of understanding the chemical processes that are triggered by the laser pulses, which may dictate the surface properties that are highly important in heterogeneous oxidation catalytic reactions. We observed the formation of radical oxygen species during LFL, which suggested that LFL is a physicochemical process that leads to particle size reductions and initiates oxidative processes. When the ionic strength in the nanoenvironment was increased, the oxidation of the first atomic layer saturated at 50%, whereby the surface charge density increases continuously. We found a correlation between the surface charge density after synthesis of colloidal nanoparticles and its behavior in catalysis. The properties of the laser-generated nanoparticles in the colloidal state appear to have predetermined the catalytic performance. We found that a smaller surface charge density of the usAu NPs was beneficial for the catalytic activity in CO and ethanol oxidation, while their peroxidase-like activity was affected less. The catalytic activity was 2 times higher for samples prepared by chloride-free LFL after ozone pretreatment compared to samples prepared in pure water. Copyright © 2020 American Chemical Society.

  • 2020 • 394
    Characterisation of volume and surface dielectric barrier discharges in N2–O2 mixtures using optical emission spectroscopy
    Kogelheide, F. and Offerhaus, B. and Bibinov, N. and Krajinski, P. and Schücke, L. and Schulze, J. and Stapelmann, K. and Awakowicz, P.
    PLASMA PROCESSES AND POLYMERS. Volume: 17 (2020)
    view abstract10.1002/ppap.201900126

    A volume and a twin surface dielectric barrier discharge (VDBD and SDBD) are generated in different nitrogen–oxygen mixtures at atmospheric pressure by applying damped sinusoidal voltage waveforms with oscillation periods in the microsecond time scale. Both electrode configurations are located inside vacuum vessels and operated in a controlled atmosphere to exclude the influence of surrounding air. The discharges are characterised with different spatial and temporal resolution by applying absolutely calibrated optical emission spectroscopy in conjunction with numerical simulations and current–voltage measurements. Plasma parameters, namely the electron density and the reduced electric field, and the dissipated power are found to depend strongly on the oxygen content in the working gas mixture. Different spatial and temporal distributions of plasma parameters and dissipated power are explained by surface and residual volume charges for different O2 admixtures due to their effects on the electron recombination rate. Thus, the oxygen admixture is found to strongly influence the breakdown process and plasma conditions of a VDBD and a SDBD. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2020 • 393
    Characterisation of micropores in plasma deposited SiO xfilms by means of positron annihilation lifetime spectroscopy
    Hoppe, C. and Mitschker, F. and Butterling, M. and Liedke, M.O. and De Los Arcos, T. and Awakowicz, P. and Wagner, A. and Grundmeier, G.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 53 (2020)
    view abstract10.1088/1361-6463/aba8ba

    The effect of average incorporated ion energy and impinging atomic oxygen flux on the structure and permeability of SiO x thin films by a microwave driven low-pressure discharge with additional radio frequency bias is studied by means of positron annihilation lifetime spectroscopy (PALS) and complementary analytical approaches. The film growth and structure were controlled by the particle fluxes. A correlation between the pore sizes and pore size distribution as measured by PALS and the adjusted plasma parameters was established. The corresponding barrier performance was measured by oxygen transmission rate and could be explained by the pore size distribution. The dominant pore size characteristic for dangling bonds within the SiO x-network was found to be in the range of 0.8 nm. The chemical composition and morphology were analysed by means of X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy diffuse reflectance measurements and atomic force microscopy. It was observed that a combination of both an increase in incorporated energy per deposited Si atom and low oxygen to silicon ratio resulted in an enhanced cross-linking of the SiO x network and thereby led to a decrease in micropore density and to a shift of the pore size distribution function to lower values. © 2020 The Author(s). Published by IOP Publishing Ltd.

  • 2020 • 392
    Protection strategies for biocatalytic proteins under plasma treatment
    Yayci, A. and Dirks, T. and Kogelheide, F. and Alcalde, M. and Hollmann, F. and Awakowicz, P. and Bandow, J.E.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 54 (2020)
    view abstract10.1088/1361-6463/abb979

    In plasma-driven biocatalysis, enzymes are employed to carry out reactions using species generated by non-thermal plasmas as the precursors. We have previously demonstrated that this is feasible in principle, but that the approach suffers from the short lifetime of the biocatalyst under operating conditions. In this work, protection strategies were investigated to prevent the dielectric barrier discharge plasma-induced inactivation of biocatalysts, using recombinant unspecific peroxygenase from Agrocybe aegerita (rAaeUPO), one of the most promising enzymes for plasma-driven biocatalysis. Treatment in oxygen-free atmospheres did not provide any advantage over treatment in synthetic air, indicating that the detrimental reactive species did not originate from oxygen in the plasma phase. Chemical scavengers were employed to eliminate undesired reactive species, without any long-term effect on enzyme lifetime. Similarly, chaperones, including the known stress response proteins Hsp33, CnoX, and RidA did not increase the lifetime of rAaeUPO. Immobilization of the biocatalyst proved effective in preserving enzyme activity. The residual activity of rAaeUPO after plasma treatment strongly depended on the specific immobilization support. Essentially complete protection for at least 15 min of plasma exposure was achieved with an epoxy-butyl-functionalized carrier. This study presents new insights into plasma-protein interactions and plots a path forward for protecting biocatalytic proteins from plasma-mediated inactivation. © 2020 IOP Publishing Ltd.

  • 2020 • 391
    Metal-Rich Chalcogenides as Sustainable Electrocatalysts for Oxygen Evolution and Reduction: State of the Art and Future Perspectives
    Amin, H.M.A. and Apfel, U.-P.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY. Volume: 2020 (2020)
    view abstract10.1002/ejic.202000406

    The rational design of high-performance and cost-effective electrocatalysts is a key for the development of sustainable energy systems such as electrolyzers, fuel cells and metal-air batteries. Although water splitting and fuel cells are commercially mature technologies, they are still limited on large scale primarily due to the abundancy of the currently utilized expensive materials as well as the sluggish kinetics of the underlaying reactions, oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), and thus the required large observed overpotentials. Therefore, an efficient inexpensive catalyst is necessary. In the last decade, metal chalcogenides have been attractive materials in electrocatalysis of OER and ORR. Herein, we provide an overview on the recent advances on particularly metal-rich chalcogenides such as heazlewoodite- and pentlandite-types including their electrochemical activities and OER mechanisms. Likewise, examples of state-of-the-art metal chalcogenides revealing bifunctional activity for both OER and ORR are also presented. Diverse strategies to improve the catalytic performance are discussed and current challenges and future perspectives towards further development in this field are addressed. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 390
    Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization
    Dobbelstein, H. and George, E.P. and Gurevich, E.L. and Kostka, A. and Ostendorf, A. and Laplanche, G.
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING. Volume: 3 (2020)
    view abstract10.1088/2631-7990/abcca8

    Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions. This applies especially to refractory high-entropy alloys (RHEAs), which are difficult to synthesize and process by conventional methods. To evaluate a possible way to accelerate the process, high-throughput laser metal deposition was used in this work to prepare a quinary RHEA, TiZrNbHfTa, as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders. Compositionally graded variants of the quinary RHEA were also analyzed. Our results show that the influence of various parameters such as powder shape and purity, alloy composition, and especially the solidification range, on the processability, microstructure, porosity, and mechanical properties can be investigated rapidly. The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders, while substitutional solid solution strengthening played a minor role. © 2020 The Author(s). Published by IOP Publishing Ltd

  • 2020 • 389
    Design of Complex Solid-Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity Curves
    Löffler, T. and Savan, A. and Meyer, H. and Meischein, M. and Strotkötter, V. and Ludwig, Al. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 59 (2020)
    view abstract10.1002/anie.201914666

    Complex solid-solution electrocatalysts (also referred to as high-entropy alloy) are gaining increasing interest owing to their promising properties which were only recently discovered. With the capability of forming complex single-phase solid solutions from five or more constituents, they offer unique capabilities of fine-tuning adsorption energies. However, the elemental complexity within the crystal structure and its effect on electrocatalytic properties is poorly understood. We discuss how addition or replacement of elements affect the adsorption energy distribution pattern and how this impacts the shape and activity of catalytic response curves. We highlight the implications of these conceptual findings on improved screening of new catalyst configurations and illustrate this strategy based on the discovery and experimental evaluation of several highly active complex solid solution nanoparticle catalysts for the oxygen reduction reaction in alkaline media. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2020 • 388
    Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni2+into Single Atom Catalysts
    Liu, Z. and Li, S. and Yang, J. and Tan, X. and Yu, C. and Zhao, C. and Han, X. and Huang, H. and Wan, G. and Liu, Y. and Tschulik, K. and Qiu, J.
    ACS NANO. Volume: 14 (2020)
    view abstract10.1021/acsnano.0c04210

    Ultrafast construction of oxygen-containing scaffold over graphite for trapping Ni2+ into single atom catalysts (SACs) was developed and presented by a one-step electrochemical activation technique. The present method for Ni SACs starts with graphite foil and is capable of achieving ultrafast preparation (1.5 min) and mass production. The defective oxygen featuring the strong electronegativity enables primarily attracting Ni2+ ions and stabilizing Ni atoms via Ni-O6 coordination instead of conventional metal-C or metal-N. In addition, the oxygen defects for trapping are tunable through altering the applied voltage or electrolyte, further altering the loading of Ni atoms, indicative of enhanced oxygen evolution activity. This simple and ultrafast electrochemical synthesis is promising for the mass and controllable production of oxygen-coordinated Ni SACs, which exhibit good performance for oxygen evolution reaction. © 2020 American Chemical Society.

  • 2019 • 387
    Enhancing the Selectivity between Oxygen and Chlorine towards Chlorine during the Anodic Chlorine Evolution Reaction on a Dimensionally Stable Anode
    Wintrich, D. and Öhl, D. and Barwe, S. and Ganassin, A. and Möller, S. and Tarnev, T. and Botz, A. and Ruff, A. and Clausmeyer, J. and Masa, J. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 6 (2019)
    view abstract10.1002/celc.201900784

    The selectivity of the chlorine evolution reaction over the oxygen evolution reaction during the electrolysis of aqueous NaCl is, despite being very high, still insufficient to prevent expensive separation of the formed Cl2 and O2 by means of liquefaction. We hypothesize that, by decreasing the local activity of H2O near the anode surface by substantially increasing the ionic strength of the electrolyte, the oxygen evolution reaction would be suppressed, leading concomitantly to a higher selectivity of Cl2 over O2 formation. Hence, the influence of the ionic strength on the competition between electrochemical evolution of O2 and Cl2 at dimensionally stable anodes (DSAs) was investigated. Addition of a high concentration of NaNO3, an inert electrolyte additive, increases the selectivity for chlorine at high current density, as determined by means of online electrochemical mass spectrometry and UV-vis spectroscopy. We propose conditions in which free water is suppressed, owing to under-coordination of the solvation shells of ions, as a general concept to modulate the selectivity of competing electrochemical reactions. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 386
    Ni-Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts
    Masa, J. and Piontek, S. and Wilde, P. and Antoni, H. and Eckhard, T. and Chen, Y.-T. and Muhler, M. and Apfel, U.-P. and Schuhmann, W.
    ADVANCED ENERGY MATERIALS. Volume: 9 (2019)
    view abstract10.1002/aenm.201900796

    Breakthroughs toward effective water-splitting electrocatalysts for mass hydrogen production will necessitate material design strategies based on unexplored material chemistries. Herein, Ni-metalloid (B, Si, P, As, Te) alloys are reported as an emergent class of highly promising electrocatalysts for the oxygen evolution reaction (OER) and insight is offered into the origin of activity enhancement on the premise of the surface electronic structure, the OER activation energy, influence of the guest metalloid elements on the lattice structure of the host metal (Ni), and surface-oxidized metalloid oxoanions. The metalloids modify the lattice structure of Ni, causing changes in the nearest Ni–Ni interatomic distance (dNi–Ni). The activation energy Ea scales with dNi–Ni indicating an apparent dependence of the OER activity on lattice properties. During the OER, surface Ni atoms are oxidized to nickel oxyhydroxide, which is the active state of the catalyst, meanwhile, the surface metalloids are oxidized to the corresponding oxoanions that affect the interfacial electrode/electrolyte properties and hence the adsorption/desorption interaction energies of the reacting species. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 385
    Optimizing the synthesis of Co/Co–Fe nanoparticles/N-doped carbon composite materials as bifunctional oxygen electrocatalysts
    Medina, D. and Barwe, S. and Masa, J. and Seisel, S. and Schuhmann, W. and Andronescu, C.
    ELECTROCHIMICA ACTA. Volume: 318 (2019)
    view abstract10.1016/j.electacta.2019.06.048

    A future widespread application of electrochemical energy conversion and storage technologies strongly depends on the substitution of precious metal-based electrocatalysts for the high-overpotential oxygen reduction and oxygen evolution reactions. We report a novel Co/Co–Fe nanoparticles/N-doped carbon composite electrocatalyst (Co/CoxFey/NC) obtained by pyrolysis of CoFe layered double hydroxide (CoFe LDH) embedded in a film of a bisphenol A and tetraethylenepentamine-based polybenzoxazine poly(BA-tepa). During pyrolysis poly(BA-tepa) forms a highly conductive nitrogen-doped carbon matrix encapsulating Co/Co–Fe nanoparticles, thereby circumventing the need of any additional binder material and conductive additives. Optimization with respect to pyrolysis temperature, the CoFe LDH/BA-tepa ratio, as well as of the gas atmosphere used during the thermal treatment was performed. The optimized Co/CoxFey/NC composite material catalyst exhibits remarkable bifunctional activity towards oxygen reduction (ORR) and oxygen evolution (OER) reactions in 0.1 M KOH represented by a potential difference of only 0.77 V between the potentials at which current densities of −1 mA cm−2 for the ORR and 10 mA cm−2 for the OER were recorded. Moreover, the Co/CoxFey/NC composite material pyrolyzed in ammonia atmosphere exhibits promising stability during both the ORR and the OER. © 2019 Elsevier Ltd

  • 2019 • 384
    Assessment of combustion rates of coal chars for oxy-combustion applications
    Senneca, O. and Vorobiev, N. and Wütscher, A. and Cerciello, F. and Heuer, S. and Wedler, C. and Span, R. and Schiemann, M. and Muhler, M. and Scherer, V.
    FUEL. Volume: 238 (2019)
    view abstract10.1016/j.fuel.2018.10.093

    A drop tube reactor with high heating rates typical of pulverized boilers (>104 K/s) has been used to carry out experiments with coal in different atmospheres: N2, CO2, O2/N2 and O2/CO2. The reactor wall temperature was set at 1573 K and the particles’ residence time was kept below 130 ms. In O2/N2 and O2/CO2 atmospheres coal pyrolysis was complete and additional char conversion occurred. The degree of char conversion increased with oxygen concentration values but was further enhanced by the presence of carbon dioxide, suggesting a positive contribution of CO2 to the overall rate of conversion. Chemico-physical and structural analysis of chars revealed internal burning under regime II conditions and highlighted that the presence of CO2 favors the formation of lactones in the chars. In N2 and CO2 atmospheres the pyrolysis stage was completed, but char conversion was negligible. The combustion stage of the N2 and CO2 chars was investigated in a second stage by thermogravimetric (TG) analysis (in regime I conditions) and in a flat flame burner (in regime II conditions) to separate atmospheric effects on char formation from those on char combustion. In TG, the CO2 chars resulted to be less reactive then the N2 chars, but in the flat flame burner, the experimental rate of carbon conversion of the N2 char and the CO2 char were similar. The TG results were worked out to estimate the intrinsic kinetics of the N2 and CO2 chars towards oxygen, carbon dioxide and O2/CO2 mixtures. Kinetic rate expressions were extrapolated to regime II conditions after consideration of mass transfer limitations. Notably, the kinetic model developed for the CO2-char matched the observed rate of char (oxy-) combustion well, whereas the kinetic model of the N2-char overpredicted the reaction rate. © 2018 Elsevier Ltd

  • 2019 • 383
    Intrinsic Activity of Oxygen Evolution Catalysts Probed at Single CoFe2O4 Nanoparticles
    El Arrassi, A. and Liu, Z. and Evers, M.V. and Blanc, N. and Bendt, G. and Saddeler, S. and Tetzlaff, D. and Pohl, D. and Damm, C. and Schulz, S. and Tschulik, K.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 141 (2019)
    view abstract10.1021/jacs.9b04516

    Identifying the intrinsic electrocatalytic activity of nanomaterials is challenging, as their characterization usually requires additives and binders whose contributions are difficult to dissect. Herein, we use nano impact electrochemistry as an additive-free method to overcome this problem. Due to the efficient mass transport at individual catalyst nanoparticles, high current densities can be realized. High-resolution bright-field transmission electron microscopy and selected area diffraction studies of the catalyst particles before and after the experiments provide valuable insights in the transformation of the nanomaterials during harsh oxygen evolution reaction (OER) conditions. We demonstrate this for 4 nm sized CoFe2O4 spinel nanoparticles. It is revealed that these particles retain their size and crystal structure even after OER at current densities as high as several kA·m-2. The steady-state current scales with the particle size distribution and is limited by the diffusion of produced oxygen away from the particle. This versatilely applicable method provides new insights into intrinsic nanocatalyst activities, which is key to the efficient development of improved and precious metal-free catalysts for renewable energy technologies. © 2019 American Chemical Society.

  • 2019 • 382
    A Combinatorial Approach for Optimization of Oxygen Evolution Catalyst Loading on Mo-doped BiVO4 Photoanodes
    Gutkowski, R. and Masa, J. and Schuhmann, W.
    ELECTROANALYSIS. Volume: 31 (2019)
    view abstract10.1002/elan.201900147

    The incident photon to current efficiency (IPCE) of a photoactive surface strongly depends on the loading and thickness of the active materials. We present a combinatorial approach based on an optical scanning droplet cell for simultaneous deposition and systematic characterization of co-catalysts for the oxygen evolution reaction (OER) on Mo-doped BiVO4 (Mo−BiVO4) photoanodes electrochemically pre-deposited on transparent conductive FTO substrates. The loading and photoelectrochemical characterization of 10 different OER co-catalysts deposited by three different deposition techniques on FTO-supported Mo−BiVO4 were investigated aiming at determination of the suitable deposition parameters affording the highest enhancement of photoelectrochemical oxygen evolution for the different OER/Mo−BiVO4 films. A comparison of the photoelectrochemical performance of films of various OER co-catalyst deposited on FTO-supported Mo−BiVO4 by electrodeposition, photo-assisted electrodeposition and photodeposition revealed the necessity of a material specific optimization with respect to co-catalyst loading and deposition technique to achieve optimal IPCE for each co-catalysts. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 381
    Enhanced sensitivity of scanning bipolar electrochemical microscopy for O2 detection
    Santos, C.S. and Conzuelo, F. and Eßmann, V. and Bertotti, M. and Schuhmann, W.
    ANALYTICA CHIMICA ACTA. Volume: 1087 (2019)
    view abstract10.1016/j.aca.2019.08.049

    The Scanning Bipolar Electrochemical Microscope (SBECM) allows precise positioning of an electrochemical micro-probe serving as bipolar electrode that can be wirelessly interrogated by coupling the electrochemical detection reaction with an electrochemiluminescent reporting process. As a result, the spatially heterogeneous concentrations of an analyte of interest can be converted in real time into a map of sample reactivity. However, this can only be achieved upon optimization of the analytical performance ensuring adequate sensitivity. Here, we present the evaluation and optimized operation of the SBECM for the detection of small changes in local O2 concentrations. Parameters for achieving an improved sensitivity as well as possibilities for improving the signal-to-noise ratio in the optical signal readout are evaluated. The capability of the SBECM for O2 detection is shown at controlled conditions by recording the topography of a patterned sample and monitoring O2 evolution from a photoelectrocatalyst material. © 2019 Elsevier B.V.

  • 2019 • 380
    Enhanced propylene oxide selectivity for gas phase direct propylene epoxidation by lattice expansion of silver atoms on nickel nanoparticles
    Yu, B. and Ayvalı, T. and Raine, E. and Li, T. and Li, M.M.-J. and Zheng, J. and Wu, S. and Bagabas, A.A. and Tsang, S.C.E.
    APPLIED CATALYSIS B: ENVIRONMENTAL. Volume: 243 (2019)
    view abstract10.1016/j.apcatb.2018.10.061

    A series of surfactant-free nickel-core and silver-shell (Ni@Ag) nanoparticles encapsulated within the mesopores of SBA-15 were synthesized and tested as catalysts for direct propylene oxidation by molecular oxygen. The influences of temperature, Gas Hour Space Velocity (GHSV) and Ni/Ag ratio on catalytic activity were systematically investigated. Among the prepared samples, Ni1Ag0.4/SBA-15 exhibited the best catalytic performance with selectivity of 70.7% and PO production rate of 4.4 nmol/g/s under 1 bar at 220 °C with GHSV of 192 h−1. High selectivity was attributed to longer Ag-Ag interatomic distance obtained by careful engineering the thickness of Ag shell over preformed Ni nanoparticles. In addition, all prepared new Ni@Ag core-shell catalysts presented excellent stability, which could maintain the conversion and selectivity for at least 10 h. These results suggest that new designs based on Ag surface atoms tailoring might pave the way to highly efficient and robust Ag catalysts for direct propylene oxidation using molecular oxygen as sole oxidant. © 2018 Elsevier B.V.

  • 2019 • 379
    Influence of spore size distribution, gas mixture, and process time on the removal rate of B. subtilis spores in low-pressure plasmas
    Fiebrandt, M. and Roggendorf, J. and Moeller, R. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 52 (2019)
    view abstract10.1088/1361-6463/aafdcf

    The size reduction of B. subtilis spores due to removal of biological material in low-pressure plasmas was analyzed in a double inductively coupled plasma system. Argon, nitrogen, and oxygen at 5 Pa were used as feed gases to investigate the impact of different reactive species and high energy radiation on the process. The spore size was determined using scanning electron microscopy images and the length of thousands of spores were evaluated using an automated algorithm. By applying a statistical test the precision of the mean spore size determination was increased and the applicability of a normal distribution to describe the spore size distribution was demonstrated. The removal rate was found to vary depending on the process gas as well as on the process time and was found to be largest with a mixture of nitrogen and oxygen and lowest in pure argon. With increasing treatment time the removal rate decreases significantly and tends to stop in all gases and inhibits the complete removal of spores and potentially hazardous biological material. Possible explanations for this effect are the aggregation of non-volatile compounds or the formation of cross-linked layers which significantly reduce the etching efficiency. © 2019 IOP Publishing Ltd.

  • 2019 • 378
    Blending Real World Gasoline with Biofuel in a Direct Conversion Process
    Nürenberg, E. and Schulze, P. and Kohler, F. and Zubel, M. and Pischinger, S. and Schüth, F.
    ACS SUSTAINABLE CHEMISTRY AND ENGINEERING. Volume: 7 (2019)
    view abstract10.1021/acssuschemeng.8b03044

    A method to produce the biofuel 2,5-dimethylfuran (DMF) from cellulose-derived 5-hydroxymethylfurfural (HMF) by hydrodeoxygenation (HDO) using commercial gasoline as solvent to obtain mixtures of gasoline with DMF, appropriate for direct use in present internal combustion engines, is presented. Best results were obtained with gasoline:ethanol mixtures in the ratio 9:1 (E10), as ethanol acts as a solvent mediator for the dissolution of HMF. Selected potential biofuels are also found to give high DMF yields, for example, several alcohols (81-92%) and 2-butanone (94%), while γ-valerolacton and saturated hydrocarbons show limitations (75% and 37%, respectively). The reaction in gasoline is conducted sequentially up to three times with an initial loading of 10 wt % HMF per step, resulting in a concentration increase of up to 7 wt % DMF for each step, by which a concentration range between 7 and 20 wt % DMF in the final blend is covered. The obtained blends were evaluated by the determination of the derived cetane number (DCN) and a simulated distillation with comparison to premixed blends and proved to be comparable in a wide concentration range of DMF (5-15 wt %). Thus, a potentially directly usable fuel blend is produced in a direct conversion process without the need of costly separation. Copyright © 2018 American Chemical Society.

  • 2019 • 377
    Ab initio thermodynamics of liquid and solid water
    Cheng, B. and Engel, E.A. and Behler, J. and Dellago, C. and Ceriotti, M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. Volume: 116 (2019)
    view abstract10.1073/pnas.1815117116

    Thermodynamic properties of liquid water as well as hexagonal (Ih) and cubic (Ic) ice are predicted based on density functional theory at the hybrid-functional level, rigorously taking into account quantum nuclear motion, anharmonic fluctuations, and proton disorder. This is made possible by combining advanced free-energy methods and state-of-the-art machine-learning techniques. The ab initio description leads to structural properties in excellent agreement with experiments and reliable estimates of the melting points of light and heavy water. We observe that nuclear-quantum effects contribute a crucial 0.2 meV/H 2 O to the stability of ice Ih, making it more stable than ice Ic. Our computational approach is general and transferable, providing a comprehensive framework for quantitative predictions of ab initio thermodynamic properties using machine-learning potentials as an intermediate step. © 2019 National Academy of Sciences. All rights reserved.

  • 2019 • 376
    The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol over Cu/ZrO2 in the aqueous phase
    Gabrysch, T. and Muhler, M. and Peng, B.
    APPLIED CATALYSIS A: GENERAL. Volume: 576 (2019)
    view abstract10.1016/j.apcata.2019.03.001

    The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol via the selective cleavage of the primary C-O bond was systematically studied in the aqueous phase over a co-precipitated Cu/ZrO2 catalyst. Unsupported pure metallic Cu was used as reference catalyst. Batch experiments were performed in an autoclave by varying the reaction temperature (175–225 °C), H2 partial pressure (25–35 bar) and initial glycerol concentration (2–8 wt%). The Cu/ZrO2 catalyst was found to be highly selective to 1,2propanediol (up to 95%), and ethylene glycol was obtained as major by-product from parallel C–]C bond hydrogenolysis. The apparent activation energies amounting to 106 and 105 kJ mol-1 for Cu/ZrO2 and pure metallic Cu, respectively, of the hydrodeoxygenation pathway provide further evidence for metallic Cu acting as the active site. Kinetic analysis of the rate of glycerol consumption yielded a zero-order dependence on the concentration of glycerol suggesting an essentially almost full coverage of adsorbed glycerol as most strongly bound organic adsorbate. In contrast, a first-order dependence on hydrogen concentration was observed. Hydrogen is assumed to be not only required for the fast hydrogenation of the intermediate acetol, but also for the removal of adsorbed atomic oxygen originating from water dissociation to create empty sites for dissociative glycerol adsorption. Thus, the active Cu sites are assumed to be fully adsorbate-covered under reaction conditions. © 2019 Elsevier B.V.

  • 2019 • 375
    Catalytic Reactivation of Industrial Oxygen Depolarized Cathodes by in situ Generation of Atomic Hydrogen
    Öhl, D. and Franzen, D. and Paulisch, M. and Dieckhöfer, S. and Barwe, S. and Andronescu, C. and Manke, I. and Turek, T. and Schuhmann, W.
    CHEMSUSCHEM. Volume: 12 (2019)
    view abstract10.1002/cssc.201900628

    Electrocatalytically active materials on the industrial as well as on the laboratory scale may suffer from chemical instability during operation, air exposure, or storage in the electrolyte. A strategy to recover the loss of electrocatalytic activity is presented. Oxygen-depolarized cathodes (ODC), analogous to those that are utilized in industrial brine electrolysis, are analyzed: the catalytic activity of the electrodes upon storage (4 weeks) under industrial process conditions (30 wt % NaOH, without operation) diminishes. This phenomenon occurs as a consequence of surface oxidation and pore blockage, as revealed by scanning electron microscopy, focused ion beam milling, X-ray photoelectron spectroscopy, and Raman spectroscopy. Potentiodynamic cycling of the oxidized electrodes to highly reductive potentials and the formation of “nascent” hydrogen re-reduces the electrode material, ultimately recovering the former catalytic activity. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 374
    The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol over Cu/ZrO 2 in the aqueous phase
    Gabrysch, T. and Muhler, M. and Peng, B.
    APPLIED CATALYSIS A: GENERAL. Volume: (2019)
    view abstract10.1016/j.apcata.2019.03.001

    The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol via the selective cleavage of the primary C-O bond was systematically studied in the aqueous phase over a co-precipitated Cu/ZrO 2 catalyst. Unsupported pure metallic Cu was used as reference catalyst. Batch experiments were performed in an autoclave by varying the reaction temperature (175–225 °C), H 2 partial pressure (25–35 bar) and initial glycerol concentration (2–8 wt%). The Cu/ZrO 2 catalyst was found to be highly selective to 1,2propanediol (up to 95%), and ethylene glycol was obtained as major by-product from parallel C–]C bond hydrogenolysis. The apparent activation energies amounting to 106 and 105 kJ mol -1 for Cu/ZrO 2 and pure metallic Cu, respectively, of the hydrodeoxygenation pathway provide further evidence for metallic Cu acting as the active site. Kinetic analysis of the rate of glycerol consumption yielded a zero-order dependence on the concentration of glycerol suggesting an essentially almost full coverage of adsorbed glycerol as most strongly bound organic adsorbate. In contrast, a first-order dependence on hydrogen concentration was observed. Hydrogen is assumed to be not only required for the fast hydrogenation of the intermediate acetol, but also for the removal of adsorbed atomic oxygen originating from water dissociation to create empty sites for dissociative glycerol adsorption. Thus, the active Cu sites are assumed to be fully adsorbate-covered under reaction conditions. © 2019 Elsevier B.V.

  • 2019 • 373
    The Key Role of Water Activity for the Operating Behavior and Dynamics of Oxygen Depolarized Cathodes
    Röhe, M. and Botz, A. and Franzen, D. and Kubannek, F. and Ellendorff, B. and Öhl, D. and Schuhmann, W. and Turek, T. and Krewer, U.
    CHEMELECTROCHEM. Volume: 6 (2019)
    view abstract10.1002/celc.201901224

    Advanced chlor-alkali electrolysis with oxygen depolarized cathodes (ODC) requires 30 % less electrical energy than conventional hydrogen-evolution-based technology. Herein, we confirm that the activities of hydroxide and water govern the ODC performance and its dynamics. Experimental characterization of ODC under varying mass transfer conditions on the liquid side reveals large differences in the polarization curves as well as in potential step responses of the electrodes. Under convective transport in the liquid electrolyte, the ODC is not limited by mass transfer in its current density at j>3.9 kA m−2, whereas transport limitations are already reached at j≈1.3 kA m−2 with a stagnant electrolyte. Since gas phase conditions do not differ significantly between the measurements, these results are in contrast the common assumption that oxygen supply determines ODC performance. A dynamic model reveals the strong influence of the electrolyte mass transfer conditions on oxygen availability and thus performance. Dynamic responses of the current density to step-wise potential changes are dominated by the mass transport of water and hydroxide ions, which is by orders of magnitude faster with convective electrolyte flow. Without convective liquid electrolyte transport, a high accumulation of hydroxide ions significantly lowers the oxygen solubility. Thus, a fast mass transport of water and hydroxide is essential for high ODC performance and needs to be ensured for technical applications. The predicted accumulation of ions is furthermore validated experimentally by means of scanning electrochemical microscopy. We also show how the outlined processes can explain the distinctively different potential step responses with and without electrolyte convection. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2019 • 372
    Fe/Co/Ni mixed oxide nanoparticles supported on oxidized multi-walled carbon nanotubes as electrocatalysts for the oxygen reduction and the oxygen evolution reactions in alkaline media
    Kazakova, M.A. and Morales, D.M. and Andronescu, C. and Elumeeva, K. and Selyutin, A.G. and Ishchenko, A.V. and Golubtsov, G.V. and Dieckhöfer, S. and Schuhmann, W. and Masa, J.
    CATALYSIS TODAY. Volume: (2019)
    view abstract10.1016/j.cattod.2019.02.047

    Fabrication of efficient and cost-effective bifunctional oxygen electrocatalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) remains a challenge for the development of rechargeable metal-air batteries and unitized regenerative fuel cells technologies. Herein, we report high-performance bifunctional ORR/OER electrocatalysts consisting of mixed transition metal (Fe, Co, Ni) oxide nanoparticles supported on oxidized multi-walled carbon nanotubes (MWCNT). Investigation of the ORR and OER activity of samples with different metal compositions showed that trimetallic/MWCNT composites having Fe:Ni:Co = x:x:(1-2x) ratios, with 0.25 ≤ x ≤ 0.4, exhibit highest bifunctional activity in terms of the reversible ORR/OER overvoltage at a given current density. Moreover, the trimetallic catalysts exhibited improved selectivity with respect to the reduction of O 2 to OH − compared to the bimetallic Fe-Ni, Fe-Co and Co-Ni catalysts, thus revealing synergistic interactions among the metal oxide components. Correlation of the electrocatalytic activity with the structure of the composites is discussed for the most representative cases. © 2019 Elsevier B.V.

  • 2019 • 371
    Oxygen-mediated deformation and grain refinement in Cu-Fe nanocrystalline alloys
    Guo, J. and Duarte, M.J. and Zhang, Y. and Bachmaier, A. and Gammer, C. and Dehm, G. and Pippan, R. and Zhang, Z.
    ACTA MATERIALIA. Volume: 166 (2019)
    view abstract10.1016/j.actamat.2018.12.040

    Light elements play a crucial role on the microstructure and properties of conventional alloys and steels. Oxygen is one of the light elements which is inevitably introduced into nanocrystalline alloys during manufacturing. Here, we report that severe plastic deformation can fragment the oxides formed in powder processing and eventually cause oxygen dissolution in the matrix. A comparative investigation on Cu-Fe nanocrystalline alloys generated from different initial materials, blended powders and arc-melted bulk materials which have different oxygen contents, reveals that fragmented oxides at grain boundaries effectively decrease the grain boundary mobility, markedly facilitating grain refinement. In contrast, those oxygen atoms dissolved as interstitials in the Cu-Fe matrix lead to lattice expansion and significant decrease of stacking fault energy locally as validated by density functional theory. Such oxygen-mediated microstructure gives rise to enhanced strength and superior structural stability. The remarkable tailoring effect of oxygen can be employed to engineer nanocrystalline materials with desired properties for different applications. © 2018 Acta Materialia Inc.

  • 2019 • 370
    Oxygen vacancies and hydrogen doping in LaAlO3/SrTiO3 heterostructures: Electronic properties and impact on surface and interface reconstruction
    Piyanzina, I.I. and Eyert, V. and Lysogorskiy, Yu.V. and Tayurskii, D.A. and Kopp, T.
    JOURNAL OF PHYSICS CONDENSED MATTER. Volume: 31 (2019)
    view abstract10.1088/1361-648X/ab1831

    We investigate the effect of oxygen vacancies and hydrogen dopants at the surface and inside slabs of LaAlO3, SrTiO3, and LaAlO3/SrTiO3 heterostructures on the electronic properties by means of electronic structure calculations as based on density functional theory. Depending on the concentration, the presence of these defects in a LaAlO3 slab can suppress the surface conductivity. In contrast, in insulating SrTiO3 slabs already very small concentrations of oxygen vacancies or hydrogen dopant atoms induce a finite occupation of the conduction band. Surface defects in insulating LaAlO3/SrTiO3 heterostructure slabs with three LaAlO3 overlayers lead to the emergence of interface conductivity. Calculated defect formation energies reveal strong preference of hydrogen dopant atoms for surface sites for all structures and concentrations considered. Strong decrease of the defect formation energy of hydrogen adatoms with increasing thickness of the LaAlO3 overlayer and crossover from positive to negative values, taken together with the metallic conductivity induced by hydrogen adatoms, seamlessly explains the semiconductor-metal transition observed for these heterostructures as a function of the overlayer thickness. Moreover, we show that the potential drop and concomitant shift of (layer resolved) band edges is suppressed for the metallic configuration. Finally, magnetism with stable local moments, which form atomically thin magnetic layers at the interface, is generated by oxygen vacancies either at the surface or the interface, or by hydrogen atoms buried at the interface. In particular, oxygen vacancies in the TiO2 interface layer cause drastic downshift of the 3d eg states of the Ti atoms neighboring the vacancies, giving rise to strongly localized magnetic moments, which add to the two-dimensional background magnetization. © 2019 IOP Publishing Ltd Printed in the UK.

  • 2019 • 369
    Piece by Piece—Electrochemical Synthesis of Individual Nanoparticles and their Performance in ORR Electrocatalysis
    Evers, M.V. and Bernal, M. and Roldan Cuenya, B. and Tschulik, K.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 58 (2019)
    view abstract10.1002/anie.201813993

    The impact of individual HAuCl4 nanoreactors is measured electrochemically, which provides operando insights and precise control over the modification of electrodes with functional nanoparticles of well-defined size. Uniformly sized micelles are loaded with a dissolved metal salt. These solution-phase precursor entities are then reduced electrochemically—one by one—to form nanoparticles (NPs). The charge transferred during the reduction of each micelle is measured individually and allows operando sizing of each of the formed nanoparticles. Thus, particles of known number and sizes can be deposited homogenously even on nonplanar electrodes. This is demonstrated for the decoration of cylindrical carbon fibre electrodes with 25±7 nm sized Au particles from HAuCl4-filled micelles. These Au NP-decorated electrodes show great catalyst performance for ORR (oxygen reduction reaction) already at low catalyst loadings. Hence, collisions of individual precursor-filled nanocontainers are presented as a new route to nanoparticle-modified electrodes with high catalyst utilization. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 368
    Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6-12 alcohol yield
    Wang, Q.-N. and Zhou, B.-C. and Weng, X.-F. and Lv, S.-P. and Schüth, F. and Lu, A.-H.
    CHEMICAL COMMUNICATIONS. Volume: 55 (2019)
    view abstract10.1039/c9cc05454e

    Herein, we have shown that the [Ca-O-P] sites exposed on hydroxyapatite are clearly responsible for C-C formation in ethanol direct-coupling, and their high density accelerates the C-C coupling rate and boosts C6-12 alcohol production. Notably, nanowire-like hydroxyapatite exhibited 30.4% selectivity to n-butanol and 63.9% selectivity to C6-12OH at a conversion of 45.7% at 325 °C, and thereby close to 30% yield of C6-12OH, which is greatly higher than that using the state-of-the-art catalysts (6%). © 2019 The Royal Society of Chemistry.

  • 2019 • 367
    Towards maximized utilization of iridium for the acidic oxygen evolution reaction
    Ledendecker, M. and Geiger, S. and Hengge, K. and Lim, J. and Cherevko, S. and Mingers, A.M. and Göhl, D. and Fortunato, G.V. and Jalalpoor, D. and Schüth, F. and Scheu, C. and Mayrhofer, K.J.J.
    NANO RESEARCH. Volume: 12 (2019)
    view abstract10.1007/s12274-019-2383-y

    The reduction in noble metal content for efficient oxygen evolution catalysis is a crucial aspect towards the large scale commercialisation of polymer electrolyte membrane electrolyzers. Since catalytic stability and activity are inversely related, long service lifetime still demands large amounts of low-abundant and expensive iridium. In this manuscript we elaborate on the concept of maximizing the utilisation of iridium for the oxygen evolution reaction. By combining different tin oxide based support materials with liquid atomic layer deposition of iridium oxide, new possibilities are opened up to grow thin layers of iridium oxide with tuneable noble metal amounts. In-situ, time- and potential-resolved dissolution experiments reveal how the stability of the substrate and the catalyst layer thickness directly affect the activity and stability of deposited iridium oxide. Based on our results, we elaborate on strategies how to obtain stable and active catalysts with maximized iridium utilisation for the oxygen evolution reaction and demonstrate how the activity and durability can be tailored correspondingly. Our results highlight the potential of utilizing thin noble metal films with earth abundant support materials for future catalytic applications in the energy sector. [Figure not available: see fulltext.]. © 2019, The author(s).

  • 2019 • 366
    SiO2 microstructure evolution during plasma deposition analyzed via ellipsometric porosimetry
    Buschhaus, R. and von Keudell, A.
    PLASMA PROCESSES AND POLYMERS. Volume: 16 (2019)
    view abstract10.1002/ppap.201900015

    The evolution of (Formula presented.) microstructures, deposited from hexamethyldisiloxane (HMDSO) and oxygen gas mixtures by two different low pressure plasma sources, namely an inductively coupled plasma (ICP process) at 3 Pa and a microwave plasma (MW process) at 100 Pa, is evaluated and compared. The microstructure is monitored using ellipsometric porosimetry (EP) applying three different solvent molecules (water, ethanol, and toluene) to probe the different adsorption and absorption mechanisms as well as the pore sizes. Both plasma processes are adjusted so that an equivalent oxygen atom contribution to the growth flux is established and that an equivalent specific energy per molecule is dissipated in the process. The major difference is the partial pressure of the HMDSO precursor molecules, which is 0.04 Pa in the ICP process and 1 Pa in the MW process. The porosimetry analysis indicates that the (Formula presented.) films originating from the MW process are more porous than those from the ICP process. The pore sizes are typically in the range of 0.3 nm for films deposited from both plasma processes. This is explained by assuming that the gas phase polymerization in the MW process is much stronger due to the higher HMDSO partial pressure and, therefore, the (Formula presented.) films are deposited from larger HMDSO fragments in the MW process compared with smaller HMDSO fragments in the ICP process. This difference in the main growth species becomes visible in the different microstructures. Consequently, a plasma process using smaller precursor partial pressures seems to be optimal. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 365
    Spray-Flame-Synthesized LaCo1−xFexO3 Perovskite Nanoparticles as Electrocatalysts for Water and Ethanol Oxidation
    Alkan, B. and Cychy, S. and Varhade, S. and Muhler, M. and Schulz, C. and Schuhmann, W. and Wiggers, H. and Andronescu, C.
    CHEMELECTROCHEM. Volume: 6 (2019)
    view abstract10.1002/celc.201900168

    Coupling electrochemical generation of hydrogen with the concomitant formation of an industrially valuable product at the anode instead of oxygen can balance the high costs usually associated with water electrolysis. We report the synthesis of a variety of nanoparticulate LaCo1−xFexO3 perovskite materials through a specifically optimized spray-flame nanoparticle synthesis method, using different ratios of La, Co, and Fe precursor compounds. Structural characterization of the resulting materials by XRD, TEM, FTIR, and XPS analysis revealed the formation of mainly perovskite-type materials. The electrocatalytic performance of the formed perovskite-type materials towards the oxygen evolution reaction and the ethanol oxidation reaction was investigated by using rotating disk electrode voltammetry. An increased Fe content in the precursor mixture leads to a decrease in the electrocatalytic activity of the nanoparticles. The selectivity towards alcohol oxidation in alkaline media was assessed by using the ethanol oxidation reaction as a model reaction. Operando electrochemistry/ATR-IR spectroscopy results reveal that acetate and acetaldehyde are the final products, depending on the catalyst composition as well as on the applied potential. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 364
    Oxygen Evolution Electrocatalysis of a Single MOF-Derived Composite Nanoparticle on the Tip of a Nanoelectrode
    Aiyappa, H.B. and Wilde, P. and Quast, T. and Masa, J. and Andronescu, C. and Chen, Y.-T. and Muhler, M. and Fischer, R.A. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 58 (2019)
    view abstract10.1002/anie.201903283

    Determination of the intrinsic electrocatalytic activity of nanomaterials by means of macroelectrode techniques is compromised by ensemble and film effects. Here, a unique “particle on a stick” approach is used to grow a single metal–organic framework (MOF; ZIF-67) nanoparticle on a nanoelectrode surface which is pyrolyzed to generate a cobalt/nitrogen-doped carbon (CoN/C) composite nanoparticle that exhibits very high catalytic activity towards the oxygen evolution reaction (OER) with a current density of up to 230 mA cm−2 at 1.77 V (vs. RHE), and a high turnover frequency (TOF) of 29.7 s−1 at 540 mV overpotential. Identical location transmission electron microscopy (IL-TEM) analysis substantiates the “self-sacrificial” template nature of the MOF, while post-electrocatalysis studies reveal agglomeration of Co centers within the CoN/C composite during the OER. “Single-entity” electrochemical analysis allows for deriving the intrinsic electrocatalytic activity and furnishes insight into the transient behavior of the electrocatalyst under reaction conditions. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 363
    Role of gallium and yttrium dopants on the stability and performance of solution processed indium oxide thin-film transistors
    Jaehnike, F. and Pham, D.V. and Bock, C. and Kunze, U.
    JOURNAL OF MATERIALS CHEMISTRY C. Volume: 7 (2019)
    view abstract10.1039/c8tc06270f

    We study the effect of gallium and yttrium doping on both the electrical performance and the stability of indium based metal-oxide thin-film transistors (MOTFTs) at varied concentrations. As the Ga (Y) content in the In1.0GaxOy (In1.0YxOy) channel material was increased to x = 0.1 the mobility of the MOTFTs degrades by a factor of 4. Thereby the temperature stress stability is clearly enhanced by increasing doping concentration: the onset voltage shift is reduced by a factor of 3 for both In1.0Ga0.1Oy and In1.0Y0.1Oy films compared to that in indium-oxide TFTs. Also the stability during negative bias stress (NBS) is improved since the strong oxygen binders Ga and Y prevent the desorption of oxygen at the surface. In contrast, the onset voltage shift during positive bias stress (PBS) of doped metal oxide TFTs is higher ΔVon = 12 V for InGaO (100:10) TFTs and ΔVon = 15 V for InYO ((100:10) TFTs) compared to that of intrinsic indium oxide TFTs (ΔVon = 6 V), which could be attributed to the generation of flat trap states at the dielectric/semiconductor interface. Doping with Ga and Y significantly enhances the temperature and NBS stability of TFTs and simultaneously degrades the performance. © 2019 The Royal Society of Chemistry.

  • 2019 • 362
    Potential Precursor Alternatives to the Pyrophoric Trimethylaluminium for the Atomic Layer Deposition of Aluminium Oxide
    Mai, L. and Boysen, N. and Zanders, D. and de los Arcos, T. and Mitschker, F. and Mallick, B. and Grundmeier, G. and Awakowicz, P. and Devi, A.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 25 (2019)
    view abstract10.1002/chem.201900475

    New precursor chemistries for the atomic layer deposition (ALD) of aluminium oxide are reported as potential alternatives to the pyrophoric trimethylaluminium (TMA) which is to date a widely used Al precursor. Combining the high reactivity of aluminium alkyls employing the 3-(dimethylamino)propyl (DMP) ligand with thermally stable amide ligands yielded three new heteroleptic, non-pyrophoric compounds [Al(NMe2)2(DMP)] (2), [Al(NEt2)2(DMP)] (3, BDEADA) and [Al(NiPr2)2(DMP)] (4), which combine the properties of both ligand systems. The compounds were synthesized and thoroughly chemically characterized, showing the intramolecular stabilization of the DMP ligand as well as only reactive Al−C and Al−N bonds, which are the key factors for the thermal stability accompanied by a sufficient reactivity, both being crucial for ALD precursors. Upon rational variation of the amide alkyl chains, tunable and high evaporation rates accompanied by thermal stability were found, as revealed by thermal evaluation. In addition, a new and promising plasma enhanced (PE)ALD process using BDEADA and oxygen plasma in a wide temperature range from 60 to 220 °C is reported and compared to that of a modified variation of the TMA, namely [AlMe2(DMP)] (DMAD). The resulting Al2O3 layers are of high density, smooth, uniform, and of high purity. The applicability of the Al2O3 films as effective gas barrier layers (GBLs) was successfully demonstrated, considering that coating on polyethylene terephthalate (PET) substrates yielded very good oxygen transmission rates (OTR) with an improvement factor of 86 for a 15 nm film by using DMAD and a factor of 25 for a film thickness of just 5 nm by using BDEDA compared to bare PET substrates. All these film attributes are of the same quality as those obtained for the industrial precursor TMA, rendering the new precursors safe and potential alternatives to TMA. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 361
    Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides
    Masa, J. and Andronescu, C. and Antoni, H. and Sinev, I. and Seisel, S. and Elumeeva, K. and Barwe, S. and Marti-Sanchez, S. and Arbiol, J. and Roldan Cuenya, B. and Muhler, M. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 6 (2019)
    view abstract10.1002/celc.201800669

    The modification of nickel with boron or phosphorus leads to significant enhancement of its electrocatalytic activity for the oxygen evolution reaction (OER). However, the precise role of the guest elements, B and P, in enhancing the OER of the host element (Ni) remains unclear. Herein, we present insight into the role of B and P in enhancing electrocatalysis of oxygen evolution by nickel borides and nickel phosphides. The apparent activation energy, Ea*, of electrocatalytic oxygen evolution on Ni2P was 78.4 kJ/mol, on Ni2B 65.4 kJ/mol, and on Ni nanoparticles 94.0 kJ/mol, thus revealing that both B and P affect the intrinsic activity of nickel. XPS data revealed shifts of −0.30 and 0.40 eV in the binding energy of the Ni 2p3/2 peak of Ni2B and Ni2P, respectively, with respect to that of pure Ni at 852.60 eV, thus indicating that B and P induce opposite electronic effects on the surface electronic structure of Ni. The origin of enhanced activity for oxygen evolution cannot, therefore, be attributed to such electronic modification or ligand effect. Severe changes induced on the nickel lattice, specifically, the Ni-Ni atomic order and interatomic distances (strain effect), by the presence of the guest atoms seem to be the dominant factors responsible for enhanced activity of oxygen evolution in nickel borides and nickel phosphides. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 360
    Tuning Light-Driven Water Splitting Efficiency of Mo-Doped BiVO4: Optimised Preparation and Impact of Oxygen Evolution Electrocatalysts
    Junqueira, J.R.C. and Bobrowski, T. and Krysiak, O.A. and Gutkowski, R. and Schuhmann, W.
    CHEMCATCHEM. Volume: 11 (2019)
    view abstract10.1002/cctc.201901646

    We present airbrush spray-coating as a reproducible method for the preparation of Mo-doped BiVO4 (Mo : BiVO4) as photoabsorber with different layer thicknesses and Mo content. Optimisation of layer thickness is aiming on diminishing limitations by the electronic conductivity within the photoabsorber, thus increasing the incident photon to current efficiency (IPCE) of the samples. Furthermore, the Mo to V ratio leading to the highest photocurrent density was determined, and the optimised Mo : BiVO4 samples were decorated with a variety of oxygen evolution reaction (OER) electrocatalysts such as cobalt phosphate and layered double hydroxides. A mass loading gradient of Ni−Fe LDH was sprayed on top of the Mo : BiVO4 photoanode for optimisation of the OER catalyst loading. The photocurrent density was enhanced by up to 5.8 times at 0.8 V vs. RHE in comparison with the pristine Mo : BiVO4 sample in absence of any OER electrocatalyst. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2019 • 359
    Selective 2-Propanol Oxidation over Unsupported Co3O4 Spinel Nanoparticles: Mechanistic Insights into Aerobic Oxidation of Alcohols
    Anke, S. and Bendt, G. and Sinev, I. and Hajiyani, H. and Antoni, H. and Zegkinoglou, I. and Jeon, H. and Pentcheva, R. and Roldan Cuenya, B. and Schulz, S. and Muhler, M.
    ACS CATALYSIS. Volume: 9 (2019)
    view abstract10.1021/acscatal.9b01048

    Crystalline Co3O4 nanoparticles with a uniform size of 9 nm as shown by X-ray diffraction (XRD) and transmission electron microscopy (TEM) were synthesized by thermal decomposition of cobalt acetylacetonate in oleylamine and applied in the oxidation of 2-propanol after calcination. The catalytic properties were derived under continuous flow conditions as a function of temperature up to 573 K in a fixed-bed reactor at atmospheric pressure. Temperature-programmed oxidation, desorption (TPD), surface reaction (TPSR), and 2-propanol decomposition experiments were performed to study the interaction of 2-propanol and O2 with the exposed spinel surfaces. Co3O4 selectively catalyzes the oxidative dehydrogenation of 2-propanol, yielding acetone and H2O and only to a minor extent the total oxidation to CO2 and H2O at higher temperatures. The high catalytic activity of Co3O4 reaching nearly full conversion with 100% selectivity to acetone at 430 K is attributed to the high amount of active Co3+ species at the catalyst surface as well as surface-bound reactive oxygen species observed in the O2 TPD, 2-propanol TPD, TPSR, and 2-propanol decomposition experiments. Density functional theory calculations with a Hubbard U term support the identification of the 5-fold-coordinated octahedral surface Co5c3+ as the active site, and oxidative dehydrogenation involving adsorbed atomic oxygen was found to be the energetically most favored pathway. The consumption of surface oxygen and reduction of Co3+ to Co2+ during 2-propanol oxidation derived from X-ray absorption spectroscopy and X-ray photoelectron spectroscopy measurements before and after reaction and poisoning by strongly bound carbonaceous species result in the loss of the low-temperature activity, while the high-temperature reaction pathway remained unaffected. © 2019 American Chemical Society.

  • 2019 • 358
    Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials
    Šestan, A. and Zavašnik, J. and Kržmanc, M.M. and Kocen, M. and Jenuš, P. and Novak, S. and Čeh, M. and Dehm, G.
    JOURNAL OF NUCLEAR MATERIALS. Volume: 524 (2019)
    view abstract10.1016/j.jnucmat.2019.06.030

    Tungsten (W) and various composites are being considered as the primary plasma-facing materials for fusion reactors. Like all engineering materials, they contain certain levels of impurities, which can have an important impact on mechanical properties. In the present work, oxygen was identified as a major impurity in our starting tungsten powder. At elevated temperatures, the presence of interstitial elements such as oxygen leads to the formation of an oxide-rich tungsten phase at the tungsten grain boundaries. In this study, we determined the capacity of tungsten carbide (WC) nanoparticles to remove the oxide impurities from a tungsten body. Tungsten composites with 0.05, 0.25 and 0.51 wt. % carbon (C) in the form of WC were sintered using a field-assisted sintering technique (FAST) at 1900 °C for 5 min. The sintered samples were characterized using field-emission scanning and transmission electron microscopy. Thermodynamic and kinetic considerations allowed us to determine the optimum theoretical amount of WC to prevent the in-situ formation of WO2. © 2019 Andreja Šestan, Janez Zavašnik, Marjeta Maček Kržmanc, Matej Kocen, Petra Jenuš, Saša Novak, Miran Čeh, Gerhard Dehm

  • 2019 • 357
    Degradation of iridium oxides via oxygen evolution from the lattice: Correlating atomic scale structure with reaction mechanisms
    Kasian, O. and Geiger, S. and Li, T. and Grote, J.-P. and Schweinar, K. and Zhang, S. and Scheu, C. and Raabe, D. and Cherevko, S. and Gault, B. and Mayrhofer, K.J.J.
    ENERGY AND ENVIRONMENTAL SCIENCE. Volume: 12 (2019)
    view abstract10.1039/c9ee01872g

    Understanding the fundamentals of iridium degradation during the oxygen evolution reaction is of importance for the development of efficient and durable water electrolysis systems. The degradation mechanism is complex and it is under intense discussion whether the oxygen molecule can be directly released from the oxide lattice. Here, we define the extent of lattice oxygen participation in the oxygen evolution and associated degradation of rutile and hydrous iridium oxide catalysts, and correlate this mechanism with the atomic-scale structures of the catalytic surfaces. We combine isotope labelling with atom probe tomography, online electrochemical and inductively coupled plasma mass spectrometry. Our data reveal that, unlike rutile IrO2, Ir hydrous oxide contains -IrIIIOOH species which directly contribute to the oxygen evolution from the lattice. This oxygen evolution mechanism results in faster degradation and dissolution of Ir. In addition, near surface bulk regions of hydrous oxide are involved in the oxygen catalysis and dissolution, while only the topmost atomic layers of rutile IrO2 participate in both reactions. Overall our data provide a contribution to the fundamental understanding of the exceptional stability of Ir-oxides towards the oxygen evolution reaction. The proposed approach to a quantitative assessment of the degree of lattice oxygen participation in the oxygen evolution reaction can be further applied to other oxide catalyst systems. © 2019 The Royal Society of Chemistry.

  • 2019 • 356
    Validation of a Terminally Amino Functionalized Tetra-Alkyl Sn(IV) Precursor in Metal–Organic Chemical Vapor Deposition of SnO2 Thin Films: Study of Film Growth Characteristics, Optical, and Electrical Properties
    Zanders, D. and Ciftyurek, E. and Hoppe, C. and de los Arcos, T. and Kostka, A. and Rogalla, D. and Grundmeier, G. and Schierbaum, K.D. and Devi, A.
    ADVANCED MATERIALS INTERFACES. Volume: 6 (2019)
    view abstract10.1002/admi.201801540

    Tin(IV) oxide is a promising semiconductor material with leading-edge properties toward chemical sensing and other applications. For the growth of its thin films, metal–organic chemical vapor deposition (MOCVD) routes are advantageous due to their excellent scalability and potential to tune processing temperatures by careful choice of the reactants. Herein, a new and highly efficient MOCVD process for the deposition of tin(IV) oxide thin films employing a terminally amino alkyl substituted tin(IV) tetra-alkyl compound is reported for the first time. The liquid precursor, tetrakis-[3-(N,N-dimethylamino)propyl] tin(IV), [Sn(DMP)4], is thermally characterized in terms of stability and vapor pressure, yielding highly pure, polycrystalline tin(IV) oxide thin films with tunable structural and morphological features in the presence of oxygen. Detailed X-ray photoelectron spectroscopy (XPS) analysis reveals the presence of oxygen vacancies and high amounts of chemisorbed oxygen species. Based on these promising features, the MOCVD process is optimized toward downscaling the thickness of tin(IV) oxide films from 25 to 50 nm to study the impact of incipient surface morphological changes occurring after initial thin-film formation on the electrical properties as investigated by van der Pauw (vdP) resistivity measurements. Optical bandgaps of thin films with varying thicknesses are estimated using ultraviolet–visible (UV–vis) spectroscopy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 355
    Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses
    Esselborn, J. and Kertess, L. and Apfel, U.-P. and Hofmann, E. and Happe, T.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 141 (2019)
    view abstract10.1021/jacs.9b07808

    The [FeFe]-hydrogenases catalyze the uptake and evolution of hydrogen with unmatched speed at low overpotential. However, oxygen induces the degradation of the unique [6Fe-6S] cofactor within the active site, termed the H-cluster. We used X-ray structural analyses to determine possible modes of irreversible oxygen-driven inactivation. To this end, we exposed crystals of the [FeFe]-hydrogenase CpI from Clostridium pasteurianum to oxygen and quantitatively investigated the effects on the H-cluster structure over several time points using multiple data sets, while correlating it to decreases in enzyme activity. Our results reveal the loss of specific Fe atoms from both the diiron (2FeH) and the [4Fe-4S] subcluster (4FeH) of the H-cluster. Within the 2FeH, the Fe atom more distal to the 4FeH is strikingly more affected than the more proximal Fe atom. The 4FeH interconverts to a [2Fe-2S] cluster in parts of the population of active CpIADT, but not in crystals of the inactive apoCpI initially lacking the 2FeH. We thus propose two parallel processes: dissociation of the distal Fe atom and 4FeH interconversion. Both pathways appear to play major roles in the oxidative damage of [FeFe]-hydrogenases under electron-donor deprived conditions probed by our experimental setup. Copyright © 2019 American Chemical Society.

  • 2019 • 354
    Comparative Analysis of Photocatalytic and Electrochemical Degradation of 4-Ethylphenol in Saline Conditions
    Brüninghoff, R. and Van Duijne, A.K. and Braakhuis, L. and Saha, P. and Jeremiasse, A.W. and Mei, B. and Mul, G.
    ENVIRONMENTAL SCIENCE AND TECHNOLOGY. Volume: 53 (2019)
    view abstract10.1021/acs.est.9b01244

    We evaluated electrochemical degradation (ECD) and photocatalytic degradation (PCD) technologies for saline water purification, with a focus on rate comparison and formation and degradation of chlorinated aromatic intermediates using the same non-chlorinated parent compound, 4-ethylphenol (4EP). At 15 mA·cm-2, and in the absence of chloride (0.6 mol·L-1 NaNO3 was used as supporting electrolyte), ECD resulted in an apparent zero-order rate of 30 μmol L-1·h-1, whereas rates of ∼300 μmol L-1·h-1 and ∼3750 μmol L-1·h-1 were computed for low (0.03 mol·L-1) and high (0.6 mol·L-1) NaCl concentration, respectively. For PCD, initial rates of ∼330 μmol L-1·h-1 and 205 μmol L-1·h-1 were found for low and high NaCl concentrations, at a photocatalyst (TiO2) concentration of 0.5 g·L-1, and illumination at λmax ≈ 375 nm, with an intensity ∼0.32 mW·cm-2. In the chlorine mediated ECD approach, significant quantities of free chlorine (hypochlorite, Cl2) and chlorinated hydrocarbons were formed in solution, while photocatalytic degradation did not show the formation of free chlorine, nor chlorine-containing intermediates, and resulted in better removal of non-purgeable hydrocarbons than ECD. The origin of the minimal formation of free chlorine and chlorinated compounds in photocatalytic degradation is discussed based on photoelectrochemical results and existing literature, and explained by a chloride-mediated surface-charge recombination mechanism. © 2019 American Chemical Society.

  • 2019 • 353
    Cobalt metalloid and polybenzoxazine derived composites for bifunctional oxygen electrocatalysis
    Barwe, S. and Andronescu, C. and Engels, R. and Conzuelo, F. and Seisel, S. and Wilde, P. and Chen, Y.-T. and Masa, J. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 297 (2019)
    view abstract10.1016/j.electacta.2018.12.047

    The development of bifunctional oxygen electrodes is a key factor for the envisaged application of rechargeable metal-air batteries. In this work, we present a simple procedure based on pyrolysis of polybenzoxazine/metal metalloid nanoparticles composites into efficient bifunctional oxygen reduction and oxygen evolution electrocatalysts. This procedure generates nitrogen-doped carbon with embedded metal metalloid nanoparticles exhibiting high activity towards both, oxygen reduction and oxygen evolution, in 0.1 M KOH with a roundtrip voltage of as low as 0.81 V. Koutecký-Levich analysis coupled with scanning electrochemical microscopy reveals that oxygen is preferentially reduced in a 4e− transfer pathway to hydroxide rather than to hydrogen peroxide. Furthermore, the polybenzoxazine derived carbon matrix allows for stable catalyst fixation on the electrode surface, resulting in unattenuated activity during continuous alternate polarisation between oxygen evolution at 10 mA cm−2 and oxygen reduction at −1.0 mA cm−2. © 2018 Elsevier Ltd

  • 2019 • 352
    Highly Selective Anaerobic Oxidation of Alcohols Over Fe-doped SrTiO3 Under Visible Light
    Hu, Y. and Zhao, G. and Pan, Q. and Wang, H. and Shen, Z. and Peng, B. and Busser, G.W. and Wang, X. and Muhler, M.
    CHEMCATCHEM. Volume: 11 (2019)
    view abstract10.1002/cctc.201901451

    Photocatalytic oxidation of alcohols with high selectivity is a promising approach for the synthesis of organic compounds under mild conditions and for solar energy conversion. In this work, we report on the highly selective anaerobic photooxidation of alcohols to carbonyl compounds with coupled H2 production over Pt-loaded Fe-doped SrTiO3 under visible light. Representatively, an optimized apparent quantum efficiency of 13.2 % at 420 nm was obtained for benzyl alcohol oxidation. X-ray absorption fine structure and in situ diffuse reflectance IR spectroscopy revealed that the surface oxygen vacancies and the fine-tuned valence band edge position induced by Fe doping not only contributed to the activation of α-C−H bonds in alcohols, but also avoided the over-oxidation of the obtained carbonyl compounds. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2019 • 351
    The Role of Non-Metallic and Metalloid Elements on the Electrocatalytic Activity of Cobalt and Nickel Catalysts for the Oxygen Evolution Reaction
    Masa, J. and Schuhmann, W.
    CHEMCATCHEM. Volume: 11 (2019)
    view abstract10.1002/cctc.201901151

    Compounds and alloys of cobalt and nickel with some nonmetals (N, P, S, Se) and metalloids (C, B, C, As and Te) have emerged as very promising noble metal-free pre-catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. However, the exact role played by the non-metals and metalloids in promoting the OER is not well understood. A holistic understanding of the origin of the OER activity enhancement in these compounds is vital for their exploitation as models to inspire knowledge-guided design of improved OER catalysts. In this review, we elucidate the factors that govern the activity and stability of OER catalysts derived from MX compounds (M=Co or Ni, and X=nonmetal or metalloid), including the impact of surface electronic structure, M : X stoichiometry, material composition, structure and crystallinity, as well as the role of oxoanions on the properties of the electrochemical double layer and interaction energies of the reaction intermediates. Finally, we outline a few perspectives and research directions towards a deeper understanding of the role of the nonmetal and metalloid elements and design of improved OER catalysts. ©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2019 • 350
    Scanning Electrochemical Cell Microscopy Investigation of Single ZIF-Derived Nanocomposite Particles as Electrocatalysts for Oxygen Evolution in Alkaline Media
    Tarnev, T. and Aiyappa, H.B. and Botz, A. and Erichsen, T. and Ernst, A. and Andronescu, C. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 58 (2019)
    view abstract10.1002/anie.201908021

    “Single entity” measurements are central for an improved understanding of the function of nanoparticle-based electrocatalysts without interference arising from mass transfer limitations and local changes of educt concentration or the pH value. We report a scanning electrochemical cell microscopy (SECCM) investigation of zeolitic imidazolate framework (ZIF-67)-derived Co−N-doped C composite particles with respect to the oxygen evolution reaction (OER). Surmounting the surface wetting issues as well as the potential drift through the use of a non-interfering Os complex as free-diffusing internal redox potential standard, SECCM could be successfully applied in alkaline media. SECCM mapping reveals activity differences relative to the number of particles in the wetted area of the droplet landing zone. The turnover frequency (TOF) is 0.25 to 1.5 s−1 at potentials between 1.7 and 1.8 V vs. RHE, respectively, based on the number of Co atoms in each particle. Consistent values at locations with varying number of particles demonstrates OER performance devoid of macroscopic film effects. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2019 • 349
    Photocatalytic one-step synthesis of Ag nanoparticles without reducing agent and their catalytic redox performance supported on carbon
    Shui, L. and Zhang, G. and Hu, B. and Chen, X. and Jin, M. and Zhou, G. and Li, N. and Muhler, M. and Peng, B.
    JOURNAL OF ENERGY CHEMISTRY. Volume: 36 (2019)
    view abstract10.1016/j.jechem.2019.04.006

    Synthesis of silver nanoparticles (Ag NPs) with state-of-the-art chemical or photo-reduction methods generally takes several steps and requires both reducing agents and stabilizers to obtain NPs with narrow size distribution. Herein, we report a novel method to synthesize Ag NPs rapidly in one step, achieving typical particle sizes in the range from 5 to 15 nm. The synthesis steps only involve three chemicals without any reducing agent: AgNO3 as precursor, polyvinylpyrrolidone (PVP) as stabilizer, and AgCl as photocatalyst. The Ag NPs were supported on carbon and showed excellent performance in thermal catalytic p-nitrophenol reduction and nitrobenzene hydrogenation, and as electrocatalyst for the oxygen reduction reaction. © 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences

  • 2019 • 348
    Deciphering Charge Transfer and Electronic Polarization Effects at Gold Nanocatalysts on Reduced Titania Support
    Yoo, S.-H. and Siemer, N. and Todorova, M. and Marx, D. and Neugebauer, J.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 123 (2019)
    view abstract10.1021/acs.jpcc.8b12015

    Gold nanoparticles supported on reduced TiO2 (110) surfaces are widely used as catalysts for oxidation reactions. Despite extensive studies, the role of oxygen vacancies in such systems remains elusive and is controversially discussed. Combining ab initio molecular dynamics simulations with methods originally developed to describe defects in semiconductor physics we study how the electronic charge originally located at the vacancy modifies the charge on the cluster. Despite differences resulting from the employed level of density functional theory (namely semilocal/GGA, GGA + U, and hybrid functionals), we consistently find that the Au clusters remain either neutral or acquire a positive charge. The intuitively expected electron transfer from the oxygen vacancy to the gold cluster can be safely ruled out. Analyzing these findings, we discuss the role of the oxygen vacancy in the bonding between Au clusters and support and the catalytic activity of the system. © 2019 American Chemical Society.

  • 2019 • 347
    A numerical analysis of a microwave induced coaxial surface wave discharge fed with a mixture of oxygen and hexamethyldisiloxane for the purpose of deposition
    Kemaneci, E. and Mitschker, F. and Benedikt, J. and Eremin, D. and Awakowicz, P. and Brinkmann, R.P.
    PLASMA SOURCES SCIENCE AND TECHNOLOGY. Volume: 28 (2019)
    view abstract10.1088/1361-6595/ab3f8a

    A microwave induced coaxial surface wave discharge with a feeding gas mixture of oxygen and hexamethyldisiloxane used for the deposition of polymer coatings is numerically analysed by a volume-averaged zero-dimensional modelling formalism. A set of edge-to-centre ratios are analytically estimated for a self-consistent description of the positive ion and reactive neutral flux at the radial walls (Kemaneci et al 2017 J. Phys. D: Appl. Phys. 50 245203). The simulation results are compared with the measurements of a wide variety of distinct particle concentrations as well as of the electron temperature and an agreement is obtained with respect to the input power, the pressure and the oxygen to hexamethyldisiloxane flow ratios. The net charge density is dominated by Si2OC5H15 + with a negligible degree of electronegativity. Hexamethyldisiloxane is fragmented into methyl radical via the electron impact dissociation and the dissociative ionization. Large amounts of hydrocarbons, water, carbon monoxide, carbon dioxide and hydrogen molecules are produced. A significant portion of the net hydrocarbon and carbon monoxide production rates is formed by the emission from the solid surfaces due to the hydrogen and oxygen atom flux. The essential roles of C3H9SiO molecules and Si2OC5H15 + ions on the deposition process are verified. © 2019 IOP Publishing Ltd.

  • 2019 • 346
    Nitrogen-Doped Metal-Free Carbon Materials Derived from Cellulose as Electrocatalysts for the Oxygen Reduction Reaction
    Wütscher, A. and Eckhard, T. and Hiltrop, D. and Lotz, K. and Schuhmann, W. and Andronescu, C. and Muhler, M.
    CHEMELECTROCHEM. Volume: 6 (2019)
    view abstract10.1002/celc.201801217

    Development of metal-free carbon-based electrocatalysts for reducing oxygen to water (ORR), preferentially following a 4 electron transfer pathway, is of high importance. We present a two-step synthesis of N-doped carbon-based ORR electrocatalysts by using an efficient thermal treatment of hydrothermally carbonized cellulose in ammonia combining devolatilization, reduction and nitrogen doping. The influence of the synthesis temperature as well as of the ammonia concentration used during the synthesis on the electrocatalytic ORR activity was analyzed using bulk- and surface-sensitive techniques. Correlation of electrocatalytic activity with structural features of the catalysts provided deeper mechanistic understanding and enabled us to optimize the synthesis conditions. The nitrogen-doped metal-free catalyst originating from the treatment in 100 % NH3 at 800 °C achieved a current density of −1 mA cm−2 at 0.83 V vs. RHE positioning it among the most active noble-metal free and biomass-based ORR catalysts reported so far. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2019 • 345
    Ag-Functionalized CuWO4/WO3 nanocomposites for solar water splitting
    Salimi, R. and Sabbagh Alvani, A.A. and Mei, B.T. and Naseri, N. and Du, S.F. and Mul, G.
    NEW JOURNAL OF CHEMISTRY. Volume: 43 (2019)
    view abstract10.1039/c8nj05625k

    Ag-Functionalized CuWO4/WO3 heterostructures were successfully prepared via a polyvinyl pyrrolidone (PVP)-assisted sol-gel (PSG) route. Thin films prepared via electrophoretic deposition were used as photoanodes for photoelectrochemical (PEC) water splitting. Compared to pristine CuWO4 and WO3 films, a significant enhancement of the photocurrent (3-4 times) at the thermodynamic potential for oxygen evolution (0.62 V vs. Ag/AgCl, pH 7) was obtained for the Ag-functionalized CuWO4/WO3 photoanodes. The obtained enhancement is shown to be derived from a synergic contribution of heterostructure formation (CuWO4/WO3) and improvements of light utilization by Ag-induced surface plasmon resonance (SPR) effects. Accordingly, a photocurrent of 0.205 mA cm-2 at 0.62 V vs. Ag/AgCl under neutral conditions (without hole scavengers) under front-side simulated AM1.5G illumination was achieved. A detailed analysis of the obtained PEC data alongside performed impedance measurements suggests that charge seperation is significantly improved for the prepared Ag-functionalized CuWO4/WO3 photoanodes. Our work offers beneficial insights to design new plasmonic metal/heterostructured nanocomposites for energy conversion applications. © 2019 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  • 2018 • 344
    In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys
    Guo, J. and Haberfehlner, G. and Rosalie, J. and Li, L. and Duarte, M.J. and Kothleitner, G. and Dehm, G. and He, Y. and Pippan, R. and Zhang, Z.
    NATURE COMMUNICATIONS. Volume: 9 (2018)
    view abstract10.1038/s41467-018-03288-8

    Oxygen contamination is a problem which inevitably occurs during severe plastic deformation of metallic powders by exposure to air. Although this contamination can change the morphology and properties of the consolidated materials, there is a lack of detailed information about the behavior of oxygen in nanocrystalline alloys. In this study, aberration-corrected high-resolution transmission electron microscopy and associated techniques are used to investigate the behavior of oxygen during in situ heating of highly strained Cu-Fe alloys. Contrary to expectations, oxide formation occurs prior to the decomposition of the metastable Cu-Fe solid solution. This oxide formation commences at relatively low temperatures, generating nanosized clusters of firstly CuO and later Fe2O3. The orientation relationship between these clusters and the matrix differs from that observed in conventional steels. These findings provide a direct observation of oxide formation in single-phase Cu-Fe composites and offer a pathway for the design of nanocrystalline materials strengthened by oxide dispersions. © 2018 The Author(s).

  • 2018 • 343
    Local Activities of Hydroxide and Water Determine the Operation of Silver-Based Oxygen Depolarized Cathodes
    Botz, A. and Clausmeyer, J. and Öhl, D. and Tarnev, T. and Franzen, D. and Turek, T. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 57 (2018)
    view abstract10.1002/anie.201807798

    Local ion activity changes in close proximity to the surface of an oxygen depolarized cathode (ODC) were measured by scanning electrochemical microscopy (SECM). While the operating ODC produces OH− ions and consumes O2 and H2O through the electrocatalytic oxygen reduction reaction (ORR), local changes in the activity of OH− ions and H2O are detected by means of a positioned Pt microelectrode serving as an SECM tip. Sensing at the Pt tip is based on the pH-dependent reduction of PtO and obviates the need for prior electrode modification steps. It can be used to evaluate the coordination numbers of OH− ions and H2O, and the method was exploited as a novel approach of catalyst activity assessment. We show that the electrochemical reaction on highly active catalysts can have a drastic influence on the reaction environment. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 342
    Influence of Temperature and Electrolyte Concentration on the Structure and Catalytic Oxygen Evolution Activity of Nickel–Iron Layered Double Hydroxide
    Andronescu, C. and Seisel, S. and Wilde, P. and Barwe, S. and Masa, J. and Chen, Y.-T. and Ventosa, E. and Schuhmann, W.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 24 (2018)
    view abstract10.1002/chem.201803165

    NiFe layered double hydroxide (LDH) is inarguably the most active contemporary catalyst for the oxygen evolution reaction under alkaline conditions. However, the ability to sustain unattenuated performance under challenging industrial conditions entailing high corrosivity of the electrolyte (≈30 wt. % KOH), high temperature (>80 °C) and high current densities (>500 mA cm−2) is the ultimate criterion for practical viability. This work evaluates the chemical and structural stability of NiFe LDH at conditions akin to practical electrolysis, in 30 % KOH at 80 °C, however, without electrochemical polarization, and the resulting impact on the OER performance of the catalyst. Post-analysis of the catalyst by means of XRD, TEM, FT-IR, and Raman spectroscopy after its immersion into 7.5 m KOH at 80 °C for 60 h revealed a transformation of the structure from NiFe LDH to a mixture of crystalline β-Ni(OH)2 and discrete predominantly amorphous FeOOH containing minor non-homogeneously distributed crystalline domains. These structural and compositional changes led to a drastic loss of the OER activity. It is therefore recommended to study catalyst stability at industrially relevant conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 341
    Unravelling electron transfer processes at photosystem 2 embedded in an Os-complex modified redox polymer
    Zhao, F. and Hartmann, V. and Ruff, A. and Nowaczyk, M.M. and Rögner, M. and Schuhmann, W. and Conzuelo, F.
    ELECTROCHIMICA ACTA. Volume: 290 (2018)
    view abstract10.1016/j.electacta.2018.09.093

    In the development of semi-artificial biophotovoltaic assemblies, deeper understanding of electrochemical processes is required to achieve functional and efficient devices. Evaluation of photosystem 2 embedded in an Os-complex modified redox polymer using scanning photoelectrochemical microscopy (SPECM) provides insight into the intricate electrochemical processes of the immobilized protein complex and its electrical communication pathways with the redox tethers of the polymer matrix. The use of local irradiation during an SPECM array scan prevents sample inactivation prior to analysis. Moreover, the simultaneously possible collection of partially reduced oxygen species in the form of hydrogen peroxide confirms the presence of competing charge transfer pathways involved in the reduction of oxygen at the chlorophyll pigments upon irradiation of the sample. In addition, evaluation of photocurrent in the presence of an inhibitor that blocks the terminal plastoquinone QB binding site of the photosystem reveals electrochemical communication between the intermediate plastoquinone QA and the redox polymer. The obtained information proves to be relevant for further design and optimization of devices for technological applications. © 2018 Elsevier Ltd

  • 2018 • 340
    High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes
    Wilde, P. and Barwe, S. and Andronescu, C. and Schuhmann, W. and Ventosa, E.
    NANO RESEARCH. Volume: 11 (2018)
    view abstract10.1007/s12274-018-2119-4

    The determination of the intrinsic properties of nanomaterials is essential for their optimization as electrocatalysts, however it poses great challenges from the standpoint of analytical tools and methods. Herein, we report a novel methodology that allows for a binder-free investigation of electrocatalyst nanoparticles. The potential-assisted immobilization of a non-noble metal catalyst, i.e., nickel-iron layered double hydroxide (NiFe LDH) nanoparticles, was employed to directly attach small nanoparticle ensembles from a suspension to the surface of etched carbon nanoelectrodes. The dimensions of this type of electrodes allowed for the immobilization of the catalyst material below the picogram scale and resulted in a high resolution towards the faradaic current response. In addition the effect of the electrochemical aging on the intrinsic activity of the catalyst was investigated in alkaline media by means of continuous cyclic voltammetry. A change in the material properties could be observed, which was accompanied by a substantial decrease in its intrinsic activity. [Figure not available: see fulltext.] © 2018, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature.

  • 2018 • 339
    Influence of biomass torrefaction parameters on fast pyrolysis products under flame-equivalent conditions
    Pielsticker, S. and Möller, G. and Gövert, B. and Kreitzberg, T. and Hatzfeld, O. and Yönder, Ö. and Angenent, V. and Hättig, C. and Schmid, R. and Kneer, R.
    BIOMASS AND BIOENERGY. Volume: 119 (2018)
    view abstract10.1016/j.biombioe.2018.08.014

    Pretreating raw biomass via torrefaction changes fuel specific properties like grindability, volatile content, energy density and biochemical stability and thus enables an enhanced fuel replacement for pulverized fossil fuel fired furnaces. In this study, the influence of torrefaction temperature on devolatilization behavior is investigated in a small-scale fluidized bed reactor approximating flame-equivalent conditions. Therefore the pyrolysis products of two different biofuels with varying degree of torrefaction are determined via ex-situ FTIR gas analysis in an N2 atmosphere in the temperature range from 873 to 1473 K. Furthermore, the mass fraction of residual char particles is determined by adding O2 to the fluidizing gas and analyzing the burnout products. Char fraction and volatile composition are used to estimate the energy release distribution between homogeneous volatile combustion and heterogeneous char burnout. The experiments revealed enlarging char yields at the expense of volatile yields with increasing degree of torrfaction at all investigated pyrolysis temperatures. Furthermore, torrefaction favors higher fractions of CO2 and lower fractions of CO and C2Hx in the light gas. Further on, no significant impact of torrefaction conditions on the tar composition could be identified. The calculation of higher heating value (HHV) based on char yield and gas composition reveals an overall increase of HHV, while the relative contribution from the volatile fraction decreases with increasing degree of torrefaction. Following this, an increase of torrefaction degree will shift combustion from a high intense volatile combustion in the near burner region towards a less intense but prolonged char conversion in the far burner region. © 2018 Elsevier Ltd

  • 2018 • 338
    A combinatorial approach to enhance barrier properties of thin films on polymers: Seeding and capping of PECVD thin films by PEALD
    Gebhard, M. and Mitschker, F. and Hoppe, C. and Aghaee, M. and Rogalla, D. and Creatore, M. and Grundmeier, G. and Awakowicz, P. and Devi, A.
    PLASMA PROCESSES AND POLYMERS. Volume: 15 (2018)
    view abstract10.1002/ppap.201700209

    A combinatorial approach to deposit gas barrier layers (GBLs) on polyethylene terephthalate (PET) by means of plasma-enhanced chemical vapor deposition (PECVD) and plasma-enhanced atomic layer deposition (PEALD) is presented. Thin films of SiOx and SiOxCyHz obtained from PECVD were grown either subsequently on a PEALD seeding layer (SiO2) or were capped by ultrathin PEALD films of Al2O3 or SiO2. To study the impact of PEALD layers on the overall GBL performance, PECVD coatings with high macro defect densities and low barrier efficiency with regard to the oxygen transmission rate (OTR) were chosen. PEALD seeding layers demonstrated the ability to influence the subsequent PECVD growth in terms of the lower macro defect density (9 macro-defects mm−2) and improved barrier performance (OTR = 0.8 cm3 m−2 day−1), while the PEALD capping-route produced GBLs free of macro-defects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 337
    Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers
    Bobrowski, T. and González Arribas, E. and Ludwig, R. and Toscano, M.D. and Shleev, S. and Schuhmann, W.
    BIOSENSORS AND BIOELECTRONICS. Volume: 101 (2018)
    view abstract10.1016/j.bios.2017.10.016

    We present a transparent and flexible self-charging biosupercapacitor based on an optimised mediator- and membrane-free enzymatic glucose/oxygen biofuel cell. Indium tin oxide (ITO) nanoparticles were spray-coated on transparent conducting ITO supports resulting in a flocculent, porous and nanostructured electrode surface. By this, high capacitive currents caused by an increased electrochemical double layer as well as enhanced catalytic currents due to a higher number of immobilised enzyme molecules were obtained. After a chemical pre-treatment with a silane derivative, bilirubin oxidase from Myrothecium verrucaria was immobilized onto the ITO nanostructured electrode surface under formation of a biocathode, while bioanodes were obtained by either immobilisation of cellobiose dehydrogenase from Corynascus thermophilus or soluble PQQ-dependent glucose dehydrogenase from Acinetobacter calcoaceticus. The latter showed a lower apparent KM value for glucose conversion and higher catalytic currents at µM glucose concentrations. Applying the optimised device as a biosupercapacitor in a discontinuous charge/discharge mode led to a generated power output of 0.030 mW/cm2 at 50 µM glucose, simulating the glucose concentration in human tears. This represents an enhancement by a factor of 350 compared to the power density obtained from the continuously operating biofuel cell with a maximum power output of 0.086 µW/cm2 under the same conditions. After 17 h of charging/discharging cycles a remarkable current enhancement was still measured. The entire device was transferred to flexible materials and applied for powering a flexible display showing its potential applicability as an intermittent power source in smart contact lenses. © 2017 Elsevier B.V.

  • 2018 • 336
    Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET
    Mitschker, F. and Wißing, J. and Hoppe, C. and De Los Arcos, T. and Grundmeier, G. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 51 (2018)
    view abstract10.1088/1361-6463/aab1dd

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiOx) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiOx network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking. © 2018 IOP Publishing Ltd.

  • 2018 • 335
    Dual properties of a hydrogen oxidation Ni-catalyst entrapped within a polymer promote self-defense against oxygen /639/638/77/886 /639/638/161/893 /639/638/675 /120 /128 /140/131 article
    Oughli, A.A. and Ruff, A. and Boralugodage, N.P. and Rodríguez-Maciá, P. and Plumeré, N. and Lubitz, W. and Shaw, W.J. and Schuhmann, W. and Rüdiger, O.
    NATURE COMMUNICATIONS. Volume: 9 (2018)
    view abstract10.1038/s41467-018-03011-7

    The Ni(P2N2)2 catalysts are among the most efficient non-noble-metal based molecular catalysts for H2 cycling. However, these catalysts are O2 sensitive and lack long term stability under operating conditions. Here, we show that in a redox silent polymer matrix the catalyst is dispersed into two functionally different reaction layers. Close to the electrode surface is the "active" layer where the catalyst oxidizes H2 and exchanges electrons with the electrode generating a current. At the outer film boundary, insulation of the catalyst from the electrode forms a "protection" layer in which H2 is used by the catalyst to convert O2 to H2O, thereby providing the "active" layer with a barrier against O2. This simple but efficient polymer-based electrode design solves one of the biggest limitations of these otherwise very efficient catalysts enhancing its stability for catalytic H2 oxidation as well as O2 tolerance. © 2018 The Author(s).

  • 2018 • 334
    Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor-Supported Nanoparticles during Overall Water-Splitting
    Mei, B. and Han, K. and Mul, G.
    ACS CATALYSIS. Volume: 8 (2018)
    view abstract10.1021/acscatal.8b02215

    Materials used for photocatalytic overall water splitting (POWS) are typically composed of light-absorbing semiconductor crystals, functionalized with so-called cocatalytic nanoparticles to improve the kinetics of the hydrogen and/or oxygen evolution reactions. While function, quantity, and protection of such metal(oxide) nanoparticles have been addressed in the literature of photocatalysis, the stability and transients in the active oxidation-state upon illumination have received relatively little attention. In this Perspective, the latest insights in the active state of frequently applied cocatalysts systems, including Pt, Rh/Cr2O3, or Ni/NiOx, will be presented. While the initial morphology and oxidation state of such nanoparticles is a strong function of the applied preparation procedure, significant changes in these properties can occur during water splitting. We discuss these changes in relation to the nature of the cocatalyst/semiconductor interface. We also show how know-how of other disciplines such as heterogeneous catalysis or electro-catalysis and recent advances in analytical methodology can help to determine the active state of cocatalytic nanoparticles in photocatalytic applications. © 2018 American Chemical Society.

  • 2018 • 333
    Three-Dimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis
    Gloag, L. and Benedetti, T.M. and Cheong, S. and Li, Y. and Chan, X.-H. and Lacroix, L.-M. and Chang, S.L.Y. and Arenal, R. and Florea, I. and Barron, H. and Barnard, A.S. and Henning, A.M. and Zhao, C. and Schuhmann, W. and Gooding, J.J. and Tilley, R.D.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 57 (2018)
    view abstract10.1002/anie.201806300

    Achieving stability with highly active Ru nanoparticles for electrocatalysis is a major challenge for the oxygen evolution reaction. As improved stability of Ru catalysts has been shown for bulk surfaces with low-index facets, there is an opportunity to incorporate these stable facets into Ru nanoparticles. Now, a new solution synthesis is presented in which hexagonal close-packed structured Ru is grown on Au to form nanoparticles with 3D branches. Exposing low-index facets on these 3D branches creates stable reaction kinetics to achieve high activity and the highest stability observed for Ru nanoparticle oxygen evolution reaction catalysts. These design principles provide a synthetic strategy to achieve stable and active electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 332
    Towards sustainable chlorate production: The effect of permanganate addition on current efficiency
    Endrődi, B. and Sandin, S. and Smulders, V. and Simic, N. and Wildlock, M. and Mul, G. and Mei, B.T. and Cornell, A.
    JOURNAL OF CLEANER PRODUCTION. Volume: 182 (2018)
    view abstract10.1016/j.jclepro.2018.02.071

    Sodium dichromate is an essential solution additive for the electrocatalytic production of sodium chlorate, assuring selective hydrogen evolution. Unfortunately, the serious environmental and health concerns related to hexavalent chromium mean there is an urgent need to find an alternative solution to achieve the required selectivity. In this study sodium permanganate is evaluated as a possible alternative to chromate, with positive results. The permanganate additive is stable in hypochlorite-containing solutions, and during electrolysis a thin film is reductively deposited on the cathode. The deposit is identified as amorphous manganese oxide by Raman spectroscopic and X-ray diffraction studies. Using different electrochemical techniques (potentiodynamic measurements, galvanostatic polarization curves) we demonstrate that the reduction of hypochlorite is suppressed, while the hydrogen evolution reaction can still proceed. In addition, the formed manganese oxide film acts as a barrier for the reduction of dissolved oxygen. The extent of hydrogen evolution selectivity in hypochlorite solutions was quantified in an undivided electrochemical cell using mass spectrometry. The cathodic current efficiency is significantly enhanced after the addition of permanganate, while the effect on the anodic selectivity and the decomposition of hypochlorite in solution is negligible. Importantly, similar results were obtained using electrodes with manganese oxide films formed ex situ. In conclusion, manganese oxides show great promise in inducing selective hydrogen evolution, and may open new research avenues to the rational design of selective cathodes, both for the chlorate process and for related processes such as photocatalytic water splitting. © 2018 Elsevier Ltd

  • 2018 • 331
    Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes
    Zhao, F. and Hardt, S. and Hartmann, V. and Zhang, H. and Nowaczyk, M.M. and Rögner, M. and Plumeré, N. and Schuhmann, W. and Conzuelo, F.
    NATURE COMMUNICATIONS. Volume: 9 (2018)
    view abstract10.1038/s41467-018-04433-z

    Interfacing photosynthetic proteins specifically photosystem 1 (PS1) with electrodes enables light-induced charge separation processes for powering semiartificial photobiodevices with, however, limited long-term stability. Here, we present the in-depth evaluation of a PS1/Os-complex-modified redox polymer-based biocathode by means of scanning photoelectrochemical microscopy. Focalized local illumination of the bioelectrode and concomitant collection of H2O2 at the closely positioned microelectrode provide evidence for the formation of partially reduced oxygen species under light conditions. Long-term evaluation of the photocathode at different O2 concentrations as well as after incorporating catalase and superoxide dismutase reveals the particularly challenging issue of avoiding the generation of reactive species. Moreover, the evaluation of films prepared with inactivated PS1 and free chlorophyll points out additional possible pathways for the generation of oxygen radicals. To avoid degradation of PS1 during illumination and hence to enhance the long-term stability, the operation of biophotocathodes under anaerobic conditions is indispensable. © 2018 The Author(s).

  • 2018 • 330
    A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode
    Szczesny, J. and Marković, N. and Conzuelo, F. and Zacarias, S. and Pereira, I.A.C. and Lubitz, W. and Plumeré, N. and Schuhmann, W. and Ruff, A.
    NATURE COMMUNICATIONS. Volume: 9 (2018)
    view abstract10.1038/s41467-018-07137-6

    Hydrogen is one of the most promising alternatives for fossil fuels. However, the power output of hydrogen/oxygen fuel cells is often restricted by mass transport limitations of the substrate. Here, we present a dual-gas breathing H2/air biofuel cell that overcomes these limitations. The cell is equipped with a hydrogen-oxidizing redox polymer/hydrogenase gas-breathing bioanode and an oxygen-reducing bilirubin oxidase gas-breathing biocathode (operated in a direct electron transfer regime). The bioanode consists of a two layer system with a redox polymer-based adhesion layer and an active, redox polymer/hydrogenase top layer. The redox polymers protect the biocatalyst from high potentials and oxygen damage. The bioanodes show remarkable current densities of up to 8 mA cm-2. A maximum power density of 3.6 mW cm-2 at 0.7 V and an open circuit voltage of up to 1.13 V were achieved in biofuel cell tests, representing outstanding values for a device that is based on a redox polymer-based hydrogenase bioanode. © 2018, The Author(s).

  • 2018 • 329
    Influence of preparation method and doping of zirconium oxide onto the material characteristics and catalytic activity for the HDO reaction in nickel on zirconium oxide catalysts
    Pichler, C.M. and Gu, D. and Joshi, H. and Schüth, F.
    JOURNAL OF CATALYSIS. Volume: 365 (2018)
    view abstract10.1016/j.jcat.2018.07.021

    Different Ni/ZrO2 catalysts were prepared and tested for the hydrodeoxygenation (HDO) reaction of guaiacol. It was shown that the preparation mode of the ZrO2 support has a significant influence on the catalytic results, as remaining elements like Si and Na from the preparation can change the material properties. The influence of Si and Na onto these material properties, which were especially surface acidity and oxygen vacancy concentration, could be clarified. It could be also rationalized, how the change of these properties affects the results of the HDO reaction. Furthermore, it was demonstrated that the oxygen vacancy concentration is an important factor for the catalytic performance, although this property has hardly been considered in the design of HDO catalysts so far. La doping was found to be an efficient strategy to tune the oxygen vacancy concentration, and by using this approach the catalytic performance of the catalyst could be improved remarkably. © 2018

  • 2018 • 328
    High-temperature ultrasound attenuation in langasite and langatate
    Hirschle, C. and Schreuer, J.
    IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL. Volume: 65 (2018)
    view abstract10.1109/TUFFC.2018.2836434

    The ultrasound attenuation in langasite crystals increases rapidly at about 800 K with increasing temperature for reasons that are not well understood. In this paper, the attenuation quantified as Q-1 of the langasite-type materials La3Ga5SiO14 (LGS) and La3Ta0.5Ga5.5O14 (LGT) was studied from room temperature to 1653 and 1608 K, respectively, using resonant ultrasound spectroscopy. Two to three attenuation peaks can be seen. A change of the magnitudes of the largest two attenuation peaks in LGT was correlated with the changing color of an LGT sample, which is related to its oxygen vacancy concentration. Thus, the attenuation likely involves oxygen vacancies. The observed Q-1 can be explained well by a model based on the anelastic relaxation of two to three noninteracting point defects causing Debye peak-like attenuation maxima. The activation energies of the largest two relaxation peaks match the activation energies for different conductivity mechanisms in LGS and LGT. Thus, the oxygen movement-based conductivity and the relaxation processes seem to involve the exchange of ions and vacancies on the same positions. The largest two attenuation peaks are probably caused by the movement of ions induced by two different phenomena, the deformation of the lattice (point-defect relaxation) on the one hand and the electric field via the piezoelectric effect (piezoelectric/carrier relaxation) on the other hand. © 1986-2012 IEEE.

  • 2018 • 327
    A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells
    Ruff, A. and Szczesny, J. and Marković, N. and Conzuelo, F. and Zacarias, S. and Pereira, I.A.C. and Lubitz, W. and Schuhmann, W.
    NATURE COMMUNICATIONS. Volume: 9 (2018)
    view abstract10.1038/s41467-018-06106-3

    Hydrogenases with Ni- and/or Fe-based active sites are highly active hydrogen oxidation catalysts with activities similar to those of noble metal catalysts. However, the activity is connected to a sensitivity towards high-potential deactivation and oxygen damage. Here we report a fully protected polymer multilayer/hydrogenase-based bioanode in which the sensitive hydrogen oxidation catalyst is protected from high-potential deactivation and from oxygen damage by using a polymer multilayer architecture. The active catalyst is embedded in a low-potential polymer (protection from high-potential deactivation) and covered with a polymer-supported bienzymatic oxygen removal system. In contrast to previously reported polymer-based protection systems, the proposed strategy fully decouples the hydrogenase reaction form the protection process. Incorporation of the bioanode into a hydrogen/glucose biofuel cell provides a benchmark open circuit voltage of 1.15 V and power densities of up to 530 µW cm−2 at 0.85 V. © 2018, The Author(s).

  • 2018 • 326
    Oxygen Reduction Activity and Reversible Deactivation of Single Silver Nanoparticles during Particle Adsorption Events
    Öhl, D. and Clausmeyer, J. and Barwe, S. and Botz, A. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 5 (2018)
    view abstract10.1002/celc.201800094

    The activity towards the oxygen reduction reaction (ORR) of single silver nanoparticles (AgNP) was quantified by using AgNP impacts on dual-bore carbon nanoelectrodes in highly alkaline media. We found suitable conditions for the particles to adhere sufficiently stably for detailed electrochemical characterization of a single particle. The special electrode design opens the possibility to dose gaseous oxygen to the nanoparticle under study. Deactivation of the catalytic activity of the AgNP upon excessive exposure to oxygen as well as the recovery of catalytic activity under reducing conditions is presumably attributed to hydrogen evolution at the applied low potentials. The proposed approach allows mechanistic parameters for the ORR to be extracted at a single AgNP in highly alkaline media in the absence of any binder materials and under exclusion of averaging ensemble effects. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 325
    Oxygen Evolution Catalysis with Mössbauerite—A Trivalent Iron-Only Layered Double Hydroxide
    Ertl, M. and Andronescu, C. and Moir, J. and Zobel, M. and Wagner, F.E. and Barwe, S. and Ozin, G. and Schuhmann, W. and Breu, J.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 24 (2018)
    view abstract10.1002/chem.201801938

    Mössbauerite is investigated for the first time as an “iron-only” mineral for the electrocatalytic oxygen evolution reaction in alkaline media. The synthesis proceeds via intermediate mixed-valence green rust that is rapidly oxidized in situ while conserving the layered double hydroxide structure. The material catalyzes the oxygen evolution reaction on a glassy carbon electrode with a current density of 10 mA cm−2 at 1.63 V versus the reversible hydrogen electrode. Stability measurements, as well as post-electrolysis characterization are presented. This work demonstrates the applicability of iron-only layered double hydroxides as earth-abundant oxygen evolution electrocatalysts. Mössbauerite is of fundamental importance since as an all Fe3+ material its performance has no contributions from unknown synergistic effects as encountered for mixed valence Co/Ni/Fe LDH. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 324
    Potential pulse-assisted immobilization of Myrothecium verrucaria bilirubin oxidase at planar and nanoporous gold electrodes
    Lopez, F. and Siepenkoetter, T. and Xiao, X. and Magner, E. and Schuhmann, W. and Salaj-Kosla, U.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY. Volume: 812 (2018)
    view abstract10.1016/j.jelechem.2017.12.023

    A potential pulse-assisted approach was used to immobilize Myrothecium verrucaria bilirubin oxidase at planar and nanoporous gold electrodes (NPG) containing pores of ca. 20 nm and ca. 40 nm in diameter. An increase in the current due to the bioelectrocatalytic reduction of oxygen by MvBOD-modified gold electrodes obtained from a 20 μL drop by the proposed pulse-assisted approach was observed when compared to the response obtained with electrodes modified by drop-casting. This increase likely arises from a preferential orientation of MvBOD molecules at the planar gold surface obtained by fast switching of the potential pulses between opposite charges. The concomitant ion stirring effect induces the attraction of the enzymes to the charged gold surface and forces access to the internal pore volume of the NPG. Immobilization of MvBOD using the potential pulse-assisted approach significantly increases current densities by facilitating the electron transfer between the enzyme and the electrode surface. © 2017 Elsevier B.V.

  • 2018 • 323
    From Enzymes to Functional Materials—Towards Activation of Small Molecules
    Möller, F. and Piontek, S. and Miller, R.G. and Apfel, U.-P.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 24 (2018)
    view abstract10.1002/chem.201703451

    The design of non-noble metal-containing heterogeneous catalysts for the activation of small molecules is of utmost importance for our society. While nature possesses very sophisticated machineries to perform such conversions, rationally designed catalytic materials are rare. Herein, we aim to raise the awareness of the overall common design and working principles of catalysts incorporating aspects of biology, chemistry, and material sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 322
    Oxidative Deposition of Manganese Oxide Nanosheets on Nitrogen-Functionalized Carbon Nanotubes Applied in the Alkaline Oxygen Evolution Reaction
    Antoni, H. and Morales, D.M. and Fu, Q. and Chen, Y.-T. and Masa, J. and Schuhmann, W. and Muhler, M.
    ACS OMEGA. Volume: 3 (2018)
    view abstract10.1021/acsomega.8b01433

    The development of nonprecious catalysts for water splitting into hydrogen and oxygen is one of the major challenges to meet future sustainable fuel demand. Herein, thin layers of manganese oxide nanosheets supported on nitrogen-functionalized carbon nanotubes (NCNTs) were formed by the treatment of NCNTs dispersed in aqueous solutions of KMnO4 or CsMnO4 under reflux or under hydrothermal (HT) conditions and used as electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. The samples were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Our results show that the NCNTs treated under reflux were covered by partly amorphous and birnessite-type manganese oxides, while predominantly crystalline birnessite manganese oxide was observed for the hydrothermally treated samples. The latter showed, depending on the temperature during synthesis, an electrocatalytically favorable reduction from birnessite-type MnO2 to γ-MnOOH. OER activity measurements revealed a decrease of the overpotential for the OER at a current density of 10 mA cm-2 from 1.70 VRHE for the bare NCNTs to 1.64 VRHE for the samples treated under reflux in the presence of KMnO4. The hydrothermally treated samples afforded the same current density at a lower potential of 1.60 VRHE and a Tafel slope of 75 mV dec-1, suggesting that the higher OER activity is due to γ-MnOOH formation. Oxidative deposition under reflux conditions using CsMnO4 along with mild HT treatment using KMnO4, and low manganese loadings in both cases, were identified as the most suitable synthetic routes to obtain highly active MnOx/NCNT catalysts for electrochemical water oxidation. © 2018 American Chemical Society.

  • 2018 • 321
    Comparative study on the deposition of silicon oxide permeation barrier coatings for polymers using hexamethyldisilazane (HMDSN) and hexamethyldisiloxane (HMDSO)
    Mitschker, F. and Schücke, L. and Hoppe, C. and Jaritz, M. and Dahlmann, R. and De Los Arcos, T. and Hopmann, C. and Grundmeier, G. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 51 (2018)
    view abstract10.1088/1361-6463/aac0ab

    The effect of the selection of hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDSN) as a precursor in a microwave driven low pressure plasma on the deposition of silicon oxide barrier coatings and silicon based organic interlayers on polyethylene terephthalate (PET) and polypropylene (PP) substrates is investigated. Mass spectrometry is used to quantify the absolute gas density and the degree of depletion of neutral precursor molecules under variation of oxygen admixture. On average, HMDSN shows a smaller density, a higher depletion and the production of smaller fragments. Subsequently, this is correlated with barrier performance and chemical structure as a function of barrier layer thickness and oxygen admixture on PET. For this purpose, the oxygen transmission rate (OTR) is measured and Fourier transformed infrared (FTIR) spectroscopy as well as x-ray photoelectron spectroscopy (XPS) is performed. HMDSN based coatings exhibit significantly higher barrier performances for high admixtures of oxygen (200 sccm). In comparison to HMDSO based processes, however, a higher supply of oxygen is necessary to achieve a sufficient degree of oxidation, cross-linking and, therefore, barrier performance. FTIR and XPS reveal a distinct carbon content for low oxygen admixtures (10 and 20 sccm) in case of HMDSN based coatings. The variation of interlayer thickness also reveals significantly higher OTR for HMDSO based coatings on PET and PP. Barrier performance of HMDSO based coatings improves with increasing interlayer thickness up to 10 nm for PET and PP. HMDSN based coatings exhibit a minimum of OTR without interlayer on PP and for 2 nm interlayer thickness on PET. Furthermore, HMDSN based coatings show distinctly higher bond strengths to the PP substrate. © 2018 IOP Publishing Ltd.

  • 2018 • 320
    Oxidation and stability of multi-walled carbon nanotubes in hydrogen peroxide solution
    Safo, I.A. and Liu, F. and Xie, K. and Xia, W.
    MATERIALS CHEMISTRY AND PHYSICS. Volume: 214 (2018)
    view abstract10.1016/j.matchemphys.2018.05.001

    The oxidation and stability of multi-walled carbon nanotubes (CNTs) have been investigated by exposing CNTs in 30% w/v H2O2 solution at room temperature (RT) for up to 8 weeks and at 80 °C for up to 8 h. H2O2 oxidation not only generated surface oxygen-containing groups, but also created surface defects, as disclosed by results of temperature-programmed desorption and X-ray Photoelectron Spectroscopy. The total surface oxygen content was found to be correlated to the final H2O2 concentration. The higher the total surface oxygen content on CNTs, the lower the final H2O2 concentration. Meanwhile, the carbon oxidation and simultaneous H2O2 decomposition were observed and confirmed by an online analysis of evolved gases during the oxidation stepwise heated from room temperature to 80 °C. Raman study showed that the D/G and D'/G ratios of the CNTs oxidized at RT first decreased with an oxidation time of 4 weeks and then increased when prolonging the oxidation time up to 8 weeks. Similar trend was also observed on the CNTs oxidized at 80 °C. The size of CNTs was gradually reduced with increasing oxidation time as shown by SEM studies. Our work reveals the critical changes in the surface oxygen groups as well as the changes in morphology at two distinct stages of hydrogen peroxide treatment, purification and then functionalization. CNTs can withstand 30% w/v H2O2 oxidation for only a certain time, while they may be damaged or consumed eventually in long-term applications. Our study contributes to filling in the knowledge gap about CNT surface oxidation and structural changes with H2O2 treatment under industrial conditions. © 2018 Elsevier B.V.

  • 2018 • 319
    Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution
    Jayaramulu, K. and Masa, J. and Morales, D.M. and Tomanec, O. and Ranc, V. and Petr, M. and Wilde, P. and Chen, Y.-T. and Zboril, R. and Schuhmann, W. and Fischer, R.A.
    ADVANCED SCIENCE. Volume: 5 (2018)
    view abstract10.1002/advs.201801029

    2D layered materials, including metal-di-chalcogenides and transition metal layered double hydroxides, among others, are intensively studied because of new properties that emerge from their 2D confinement, which are attractive for advanced applications. Herein, 2D cobalt ion (Co2+) and benzimidazole (bIm) based zeolite-imidazole framework nanosheets, ZIF-9(III), are reported as exceptionally efficient electrocatalysts for the oxygen evolution reaction (OER). Specifically, liquid-phase ultrasonication is applied to exfoliate a [Co4(bIm)16] zeolite-imidazole framework (ZIF), named as ZIF-9(III) phase, into nanoscale sheets. ZIF-9(III) is selectively prepared through simple mechanical grinding of cobalt nitrate and benzimidazole in the presence of a small amount of ethanol. The resultant exfoliated nanosheets exhibit significantly higher OER activity in alkaline conditions than the corresponding bulk phases ZIF-9 and ZIF-9(III). The electrochemical and physicochemical characterization data support the assignment of the OER activity of the exfoliated nanosheet derived material to nitrogen coordinated cobalt oxyhydroxide N4CoOOH sites, following a mechanism known for Co-porphyrin and related systems. Thus, exfoliated 2D nanosheets hold promise as potential alternatives to commercial noble metal electrocatalysts for the OER. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 318
    The stability number as a metric for electrocatalyst stability benchmarking
    Geiger, S. and Kasian, O. and Ledendecker, M. and Pizzutilo, E. and Mingers, A.M. and Fu, W.T. and Diaz-Morales, O. and Li, Z. and Oellers, T. and Fruchter, L. and Ludwig, Al. and Mayrhofer, K.J.J. and Koper, M.T.M. and Cherevko, S.
    NATURE CATALYSIS. Volume: 1 (2018)
    view abstract10.1038/s41929-018-0085-6

    Reducing the noble metal loading and increasing the specific activity of the oxygen evolution catalysts are omnipresent challenges in proton-exchange-membrane water electrolysis, which have recently been tackled by utilizing mixed oxides of noble and non-noble elements. However, proper verification of the stability of these materials is still pending. Here we introduce a metric to explore the dissolution processes of various iridium-based oxides, defined as the ratio between the amounts of evolved oxygen and dissolved iridium. The so-called stability number is independent of loading, surface area or involved active sites and provides a reasonable comparison of diverse materials with respect to stability. The case study on iridium-based perovskites shows that leaching of the non-noble elements in mixed oxides leads to the formation of highly active amorphous iridium oxide, the instability of which is explained by the generation of short-lived vacancies that favour dissolution. These insights are meant to guide further research, which should be devoted to increasing the utilization of highly durable pure crystalline iridium oxide and finding solutions to stabilize amorphous iridium oxides. © 2018 The Author(s).

  • 2018 • 317
    Atomic-scale insights into surface species of electrocatalysts in three dimensions
    Li, T. and Kasian, O. and Cherevko, S. and Zhang, S. and Geiger, S. and Scheu, C. and Felfer, P. and Raabe, D. and Gault, B. and Mayrhofer, K.J.J.
    NATURE CATALYSIS. Volume: 1 (2018)
    view abstract10.1038/s41929-018-0043-3

    The topmost atomic layers of electrocatalysts determine the mechanism and kinetics of reactions in many important industrial processes, such as water splitting, chlor-electrolysis or fuel cells. Optimizing the performance of electrocatalysts requires a detailed understanding of surface-state changes during the catalytic process, ideally at the atomic scale. Here, we use atom probe tomography to reveal the three-dimensional structure of the first few atomic layers of electrochemically grown iridium oxide, an efficient electrocatalyst for the oxygen evolution reaction. We unveil the formation of confined, non-stoichiometric Ir-O species during oxygen evolution. These species gradually transform to IrO2, providing improved stability but also a decrease in activity. Additionally, electrochemical growth of oxide in deuterated solutions allowed us to trace hydroxy-groups and water molecules present in the regions of the oxide layer that are favourable for the oxygen evolution and iridium dissolution reactions. Overall, we demonstrate how tomography with near-atomic resolution advances the understanding of complex relationships between surface structure, surface state and function in electrocatalysis. © 2018 The Author(s).

  • 2018 • 316
    Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations
    Mebs, S. and Kositzki, R. and Duan, J. and Kertess, L. and Senger, M. and Wittkamp, F. and Apfel, U.-P. and Happe, T. and Stripp, S.T. and Winkler, M. and Haumann, M.
    BIOCHIMICA ET BIOPHYSICA ACTA - BIOENERGETICS. Volume: 1859 (2018)
    view abstract10.1016/j.bbabio.2017.09.003

    [FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN−) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 − complex with the net spin on Fed whereas Hox-CO shows an apical CN− at Fed in a [4Fe4S-2Fe(CO)]3 − complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 − complex with an apical superoxide (O2 −) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 − complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 – protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site. © 2017

  • 2018 • 315
    Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting
    Weidner, J. and Barwe, S. and Sliozberg, K. and Piontek, S. and Masa, J. and Apfel, U.-P. and Schuhmann, W.
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY. Volume: 14 (2018)
    view abstract10.3762/bjoc.14.121

    The electrochemical water splitting commonly involves the cathodic hydrogen and anodic oxygen evolution reactions (OER). The oxygen evolution reaction is more energetically demanding and kinetically sluggish and represents the bottleneck for a commercial competitiveness of electrochemical hydrogen production from water. Moreover, oxygen is essentially a waste product of low commercial value since the primary interest is to convert electrical energy into hydrogen as a storable energy carrier. We report on the anodic oxidation of 5-hydroxymethylfurfural (HMF) to afford the more valuable product 2,5-furandicarboxylic acid (FDCA) as a suitable alternative to the oxygen evolution reaction. Notably, HMF oxidation is thermodynamically more favorable than water oxidation and hence leads to an overall improved energy efficiency for H2 production. In addition, contrary to the “waste product O2”, FDCA can be further utilized, e.g., for production of polyethylene 2,5-furandicarboxylate (PEF), a sustainable polymer analog to polyethylene terephthalate (PET) and thus represents a valuable product for the chemical industry with potential large scale use. Various cobalt-metalloid alloys (CoX; X = B, Si, P, Te, As) were investigated as potential catalysts for HMF oxidation. In this series, CoB required 180 mV less overpotential to reach a current density of 55 mA cm−2 relative to OER with the same electrode. Electrolysis of HMF using a CoB modified nickel foam electrode at 1.45 V vs RHE achieved close to 100% selective conversion of HMF to FDCA at 100% faradaic efficiency. © 2018 Weidner et al.

  • 2018 • 314
    Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes
    Elumeeva, K. and Kazakova, M.A. and Morales, D.M. and Medina, D. and Selyutin, A. and Golubtsov, G. and Ivanov, Y. and Kuznetzov, V. and Chuvilin, A. and Antoni, H. and Muhler, M. and Schuhmann, W. and Masa, J.
    CHEMSUSCHEM. Volume: 11 (2018)
    view abstract10.1002/cssc.201702381

    A facile strategy is reported for the synthesis of Fe/Co mixed metal oxide nanoparticles supported on, and embedded inside, high purity oxidized multiwalled carbon nanotubes (MWCNTs) of narrow diameter distribution as effective bifunctional catalysts able to reversibly drive the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline solutions. Variation of the Fe/Co ratio resulted in a pronounced trend in the bifunctional ORR/OER activity. Controlled synthesis and in-depth characterization enabled the identification of an optimal Fe/Co composition, which afforded a low OER/OER reversible overvoltage of only 0.831 V, taking the OER at 10 mA cm−2 and the ORR at −1 mA cm−2. Importantly, the optimal catalyst with a Fe/Co ratio of 2:3 exhibited very promising long-term stability with no evident change in the potential for both the ORR and the OER after 400 charge/discharge (OER/ORR) cycles at 15 mA cm−2 in 6 m KOH. Moreover, detailed investigation of the structure, size, and phase composition of the mixed Fe/Co oxide nanoparticles, as well as their localization (inside of or on the surface of the MWCNTs) revealed insight of the possible contribution of the individual catalyst components and their synergistic interaction in the catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 313
    Fabrication of perovskite-based porous nanotubes as efficient bifunctional catalyst and application in hybrid lithium-oxygen batteries
    Gong, H. and Wang, T. and Guo, H. and Fan, X. and Liu, X. and Song, L. and Xia, W. and Gao, B. and Huang, X. and He, J.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 6 (2018)
    view abstract10.1039/c8ta04599b

    The design of efficient oxygen electrocatalysts is extremely important and urgent for much energy storage and conversion equipment. Among these, the high energy densities of lithium-oxygen batteries (LOBs) have driven us to explore bifunctional catalysts. Compared with non-aqueous LOBs, which have been blamed for poor cycling stability due to their undesirable side reaction, hybrid LOBs have been considered an alternative solution due to their high electrochemical reversibility and safeness. Here, one-dimensional hierarchical mesoporous/macroporous LaMn0.7Co0.3O3-x nanotubes were synthesized through an electrospinning method combined with an annealing treatment. With the suitable heat treatment and rational doping with elemental Co, the LMCO-800 sample shows a well-designed hierarchical porous nanotube structure and possess great bifunctional electrocatalytic performance. The linear sweep voltammetry (LSV) curves show that the half-wave potential (E1/2) of the LMCO-800 sample is 0.72 V (vs. RHE) and the average electron transfer number (n) is calculated to be 3.8. Moreover, the successful doping of elemental Co into the LMCO-800 nanotubes can shorten the average distance of the Mn-Mn atoms and promote the formation of O-O bonds, contributing to the enhanced OER performance. The high specific surface area and one-dimensional nanotubes can greatly benefit oxygen diffusion, facilitate electrolyte infiltration and improve electron transfer. Consequently, the as-assembled hybrid lithium-oxygen batteries with an LMCO-800 cathode exhibit superior cycling stability. © 2018 The Royal Society of Chemistry.

  • 2018 • 312
    Electrocatalytic Nanoparticles That Mimic the Three-Dimensional Geometric Architecture of Enzymes: Nanozymes
    Benedetti, T.M. and Andronescu, C. and Cheong, S. and Wilde, P. and Wordsworth, J. and Kientz, M. and Tilley, R.D. and Schuhmann, W. and Gooding, J.J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 140 (2018)
    view abstract10.1021/jacs.8b08664

    Enzymes are characterized by an active site that is typically embedded deeply within the protein shell thus creating a nanoconfined reaction volume in which high turnover rates occur. We propose nanoparticles with etched substrate channels as a simplified enzyme mimic, denominated nanozymes, for electrocatalysis. We demonstrate increased electrocatalytic activity for the oxygen reduction reaction using PtNi nanoparticles with isolated substrate channels. The PtNi nanoparticles comprise an oleylamine capping layer that blocks the external surface of the nanoparticles participating in the catalytic reaction. Oxygen reduction mainly occurs within the etched channels providing a nanoconfined reaction volume different from the bulk electrolyte conditions. The oxygen reduction reaction activity normalized by the electrochemically active surface area is enhanced by a factor of 3.3 for the nanozymes compared to the unetched nanoparticles and a factor of 2.1 compared to mesoporous PtNi nanoparticles that possess interconnecting pores. © Copyright 2018 American Chemical Society.

  • 2018 • 311
    The Role of Metallic Copper in the Selective Hydrodeoxygenation of Glycerol to 1,2-Propanediol over Cu/ZrO2
    Gabrysch, T. and Peng, B. and Bunea, S. and Dyker, G. and Muhler, M.
    CHEMCATCHEM. Volume: 10 (2018)
    view abstract10.1002/cctc.201701748

    A series of Cu/ZrO2 catalysts with nominal CuO loadings of 5, 10, 18 and 31 wt.% was synthesized by co-precipitation, characterized and applied in the hydrodeoxygenation of glycerol under mild reaction conditions (200 °C, 25 bar H2). These catalysts were highly selective for the cleavage of C−O bonds while preserving C−C bonds leading to 95 % selectivity to 1,2-propanediol. The conversion of glycerol was observed to be linearly correlated with the specific copper surface area derived from N2O frontal chromatography. The reaction was found to occur through the dehydration of glycerol to acetol followed by its hydrogenation to 1,2-propanediol. Metallic copper was identified as the active site for both reactions suggesting the acid ZrO2 sites to be blocked by water. Reusability studies showed that the catalyst was relatively stable and the conversion decreased by only 18 % after three cycles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 310
    Using Instability of a Non-stoichiometric Mixed Oxide Oxygen Evolution Catalyst As a Tool to Improve Its Electrocatalytic Performance
    Kasian, O. and Geiger, S. and Schalenbach, M. and Mingers, A.M. and Savan, A. and Ludwig, Al. and Cherevko, S. and Mayrhofer, K.J.J.
    ELECTROCATALYSIS. Volume: 9 (2018)
    view abstract10.1007/s12678-017-0394-6

    Owing to their superior electrocatalytic performance, non-stoichiometric mixed oxides are often considered as promising electrocatalysts for the acidic oxygen evolution reaction (OER). Their activity and stability can be superior to those of the state-of-the-art IrO2 catalysts, although the exact nature of this phenomenon is not yet understood. In the current work, a Ir0.7Sn0.3O2-x thin-film electrode is taken as a representative example for a thorough evaluation of OER activity of the non-stoichiometric oxides. Complementary activity and stability analysis of Ir0.7Sn0.3O2-x electrodes is achieved using a setup based on an electrochemical scanning flow cell and ICP-MS. The obtained ICP-MS data presents an unambiguous proof of the preferential dissolution of the less noble Sn from the mixed oxide during OER. While less than a monolayer of Ir is dissolved after a prolonged electrolysis of 1400 min during which its dissolution rate drops to near zero, the amount of Sn lost is ten monolayers. The latter finding is confirmed by XPS analysis, which besides showing Ir surface enrichment also indicates a gradual transformation of Ir0 to IrIII species. This transition is beneficial for electrode activity, as the overpotential for OER at j = 5 mA cm−2 was decreasing up to 300 mV. The increase in electrode activity is attributed to several mechanisms including generation of IrIII active sites and overall surface area increase. A generalized description of OER catalysis by Ir-based materials is given, including data from the current work as well as from other Ir-based mixed oxides, such as Ir-Ru-O and Ir-Ni-O. [Figure not available: see fulltext.]. © 2017, The Author(s).

  • 2018 • 309
    Impact of Hydrophobic Organohybrid Silicas on the Stability of Ni2P Catalyst Phase in the Hydrodeoxygenation of Biophenols
    Dierks, M. and Cao, Z. and Manayil, J.C. and Akilavasan, J. and Wilson, K. and Schüth, F. and Rinaldi, R.
    CHEMCATCHEM. Volume: 10 (2018)
    view abstract10.1002/cctc.201702001

    Hydrodeoxygenation (HDO) of lignocellulose-derived pyrolysis oils offers an option to produce fuel substitutes. However, catalyst deactivation and stability constitute a significant issue. Herein, the dependence of stability and activity of Ni2P/SiO2 HDO catalysts on the support surface polarity is addressed in detail. The support surface polarity was adjusted by copolymerizing tetraethyl orthosilicate (TEOS) with different types and amounts of organosilanes by a sol–gel process in the presence of nickel nitrate and citric acid. After thermal treatment under an inert atmosphere, Ni/SiO2 precursors were formed. They were converted into Ni2P/SiO2 catalysts by using NaH2PO2 as a PH3 source. The catalyst surface polarity was characterized by inverse gas chromatography measurements of the free energy of methanol adsorption, and specific and dispersive surface energies derived from polar and nonpolar probe molecule adsorption. The correlation between catalyst performance and support surface polarity indicates that, to prevent deactivation of the catalyst by water under reaction conditions, the affinity of the support towards polar substances must be decreased below a threshold value. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 308
    Investigation of albumin-derived perfluorocarbon-based capsules by holographic optical trapping
    Köhler, J. and Ruschke, J. and Ferenz, K.B. and Esen, C. and Kirsch, M. and Ostendorf, A.
    BIOMEDICAL OPTICS EXPRESS. Volume: 9 (2018)
    view abstract10.1364/BOE.9.000743

    Albumin-derived perfluorocarbon-based capsules are promising as artificial oxygen carriers with high solubility. However, these capsules have to be studied further to allow initial human clinical tests. The aim of this paper is to provide and characterize a holographic optical tweezer to enable contactless trapping and moving of individual capsules in an environment that mimics physiological (in vivo) conditions most effectively in order to learn more about the artificial oxygen carrier behavior in blood plasma without recourse to animal experiments. Therefore, the motion behavior of capsules in a ring shaped or vortex beam is analyzed and optimized on account of determination of the optical forces in radial and axial direction. In addition, due to the customization and generation of dynamic phase holograms, the optical tweezer is used for first investigations on the aggregation behavior of the capsules and a statistical evaluation of the bonding in dependency of different capsule sizes is performed. The results show that the optical tweezer is sufficient for studying individual perfluorocarbon-based capsules and provide information about the interaction of these capsules for future use as artificial oxygen carriers. © 2018 Optical Society of America.

  • 2018 • 307
    PEALD of SiO2 and Al2O3 Thin Films on Polypropylene: Investigations of the Film Growth at the Interface, Stress, and Gas Barrier Properties of Dyads
    Gebhard, M. and Mai, L. and Banko, L. and Mitschker, F. and Hoppe, C. and Jaritz, M. and Kirchheim, D. and Zekorn, C. and De Los Arcos, T. and Grochla, D. and Dahlmann, R. and Grundmeier, G. and Awakowicz, P. and Ludwig, Al. and Devi, A.
    ACS APPLIED MATERIALS AND INTERFACES. Volume: 10 (2018)
    view abstract10.1021/acsami.7b14916

    A study on the plasma-enhanced atomic layer deposition of amorphous inorganic oxides SiO2 and Al2O3 on polypropylene (PP) was carried out with respect to growth taking place at the interface of the polymer substrate and the thin film employing in situ quartz-crystal microbalance (QCM) experiments. A model layer of spin-coated PP (scPP) was deposited on QCM crystals prior to depositions to allow a transfer of findings from QCM studies to industrially applied PP foil. The influence of precursor choice (trimethylaluminum (TMA) vs [3-(dimethylamino)propyl]-dimethyl aluminum (DMAD)) and of plasma pretreatment on the monitored QCM response was investigated. Furthermore, dyads of SiO2/Al2O3, using different Al precursors for the Al2O3 thin-film deposition, were investigated regarding their barrier performance. Although the growth of SiO2 and Al2O3 from TMA on scPP is significantly hindered if no oxygen plasma pretreatment is applied to the scPP prior to depositions, the DMAD process was found to yield comparable Al2O3 growth directly on scPP similar to that found on a bare QCM crystal. From this, the interface formed between the Al2O3 and the PP substrate is suggested to be different for the two precursors TMA and DMAD due to different growth modes. Furthermore, the residual stress of the thin films influences the barrier properties of SiO2/Al2O3 dyads. Dyads composed of 5 nm Al2O3 (DMAD) + 5 nm SiO2 exhibit an oxygen transmission rate (OTR) of 57.4 cm3 m-2 day-1, which correlates with a barrier improvement factor of 24 against 5 when Al2O3 from TMA is applied. © 2018 American Chemical Society.

  • 2018 • 306
    Discovery of a Multinary Noble Metal–Free Oxygen Reduction Catalyst
    Löffler, T. and Meyer, H. and Savan, A. and Wilde, P. and Garzón Manjón, A. and Chen, Y.-T. and Ventosa, E. and Scheu, C. and Ludwig, Al. and Schuhmann, W.
    ADVANCED ENERGY MATERIALS. Volume: 8 (2018)
    view abstract10.1002/aenm.201802269

    In the endeavor of discovering new noble metal–free electrocatalysts for the oxygen reduction reaction, noble metal–free multinary transition metal nanoparticle libraries are investigated. The complexity of such multiple principal element alloys provides access to a large variety of different elemental compositions, each with potentially unique properties. The strategy for efficient identification of novel electrocatalytically active systems comprises combinatorial co-sputtering into an ionic liquid followed by potential-assisted immobilization of the formed nanoparticles at a microelectrode which allows the evaluation of their intrinsic electrocatalytic activity in alkaline media. A surprisingly high intrinsic activity is found for the system Cr–Mn–Fe–Co–Ni, which is at least comparable to Pt under the same conditions, an unexpected result based on the typical properties of its constituents. Systematic removal of each element from the quinary alloy system yields a significant drop in activity for all quaternary alloys, indicating the importance of the synergistic combination of all five elements, likely due to formation of a single solid solution phase with altered properties which enables the limitations of the single elements to be overcome. Multinary transition metal alloys as a novel material class in electrocatalysis with basically unlimited possibilities for catalyst design, targeting the replacement of noble metal–based materials, are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2018 • 305
    Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices
    Dirkmann, S. and Kaiser, J. and Wenger, C. and Mussenbrock, T.
    ACS APPLIED MATERIALS AND INTERFACES. Volume: 10 (2018)
    view abstract10.1021/acsami.7b19836

    We report on the resistive switching in TiN/Ti/HfO2/TiN memristive devices. A resistive switching model for the device is proposed, taking into account important experimental and theoretical findings. The proposed switching model is validated using 2D and 3D kinetic Monte Carlo simulation models. The models are consistently coupled to the electric field and different current transport mechanisms such as direct tunneling, trap-assisted tunneling, ohmic transport, and transport through a quantum point contact have been considered. We find that the numerical results are in excellent agreement with experimentally obtained data. Important device parameters, which are difficult or impossible to measure in experiments, are calculated. This includes the shape of the conductive filament, width of filament constriction, current density, and temperature distribution. To obtain insights in the operation of the device, consecutive cycles have been simulated. Furthermore, the switching kinetics for the forming and set process for different applied voltages is investigated. Finally, the influence of an annealing process on the filament growth, especially on the filament growth direction, is discussed. © 2018 American Chemical Society.

  • 2017 • 304
    The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene
    Jaritz, M. and Behm, H. and Hopmann, C. and Kirchheim, D. and Mitschker, F. and Awakowicz, P. and Dahlmann, R.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS. Volume: 50 (2017)
    view abstract10.1088/1361-6463/50/1/015201

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiOxCyHz) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  • 2017 • 303
    The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene
    Jaritz, M. and Behm, H. and Hopmann, C. and Kirchheim, D. and Mitschker, F. and Awakowicz, P. and Dahlmann, R.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 50 (2017)
    view abstract10.1088/1361-6463/50/1/015201

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiOxCyHz) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study. © 2016 IOP Publishing Ltd.

  • 2017 • 302
    In situ and operando observation of surface oxides during oxygen evolution reaction on copper
    Toparli, C. and Sarfraz, A. and Wieck, A.D. and Rohwerder, M. and Erbe, A.
    ELECTROCHIMICA ACTA. Volume: 236 (2017)
    view abstract10.1016/j.electacta.2017.03.137

    Formation and dissolution of oxide on copper under transpassive conditions, i.e. during OER and transpassive dissolution, in alkaline electrolyte was investigated by a combination of electrochemical techniques and in situ and operando Raman and photoluminescence (PL) spectroscopy, as well as spectropscopic ellipsometry. Experiments were conducted under potentiodynamic and potentiostatic polarisation in 0.1M NaOH. In chronoamperometry experiments with steps between potentials, oxide thickness continued increasing beyond the onset of OER. The thickness dropped significantly from >10 nm to <5 nm ≈400 mV above the OER onset. The presence of CuO, Cu2O and Cu4O3 was observed by Raman spectroscopy after the onset of OER. Correlating with the thickness drop, strong PL was observed at 1.55 eV, indicating the formation of singly charged oxygen vacancies VO+, following the classical PL spectrum interpretation from the literature. PL observation speaks against vacancy pair coalescence as mechanism of dissolution. After electrochemical experiments, the films were n-type semiconductors, not p-type conductors as expected for copper oxides. Results indicate that transpassive dissolution may be triggered by the instability of the oxide with respect to defect formation. © 2017 Elsevier Ltd

  • 2017 • 301
    NH3 Post-Treatment Induces High Activity of Co-Based Electrocatalysts Supported on Carbon Nanotubes for the Oxygen Evolution Reaction
    Yang, F. and Xia, W. and Maljusch, A. and Masa, J. and Hollmann, D. and Sinev, I. and Cuenya, B.R. and Schuhmann, W. and Muhler, M.
    CHEMELECTROCHEM. Volume: 4 (2017)
    view abstract10.1002/celc.201700109

    Cobalt oxide nanoparticles were deposited on nitrogen-doped carbon nanotubes (NCNTs) through impregnation by using cobalt nitrate as a precursor and subsequent drying and calcination. Co loadings were prepared in the range from 4 to 40 wt%, and hydrogen and ammonia were applied in the thermal post-treatment of the CoOx/NCNT samples. The Co3O4 spinel structure was detected in all samples, while the thermal treatment in ammonia and hydrogen led to the formation of CoO and metallic Co in addition. Treatment in ammonia resulted in the partial reduction of Co3O4 to CoO and nitrogen doping of the oxides, leading to excellent electrocatalytic activity in the oxygen evolution reaction (OER) and stability despite of the lower Co oxidation states compared with the sample calcined in air. In contrast, the sample reduced in hydrogen showed a lower activity and stability in the OER. The high activity of the ammonia-treated sample can be assigned to improved conductivity, favorable surface properties with surface nitrogen improving the hydrophilicity of the catalysts, and the more facile transformation to the OER-active layered cobalt oxyhydroxide phase under anodic conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 300
    In depth nano spectroscopic analysis on homogeneously switching double barrier memristive devices
    Strobel, J. and Hansen, M. and Dirkmann, S. and Neelisetty, K.K. and Ziegler, M. and Haberfehlner, G. and Popescu, R. and Kothleitner, G. and Chakravadhanula, V.S.K. and Kübel, C. and Kohlstedt, H. and Mussenbrock, T. and Kienle, L.
    JOURNAL OF APPLIED PHYSICS. Volume: 121 (2017)
    view abstract10.1063/1.4990145

    Memristors based on a double barrier design have been analyzed by various nanospectroscopic methods to unveil details about their microstructure and conduction mechanism. The device consists of an AlOx tunnel barrier and a NbOy/Au Schottky barrier sandwiched between the Nb bottom electrode and the Au top electrode. As it was anticipated that the local chemical composition of the tunnel barrier, i.e., oxidation state of the metals as well as concentration and distribution of oxygen ions, has a major influence on electronic conduction, these factors were carefully analyzed. A combined approach was chosen in order to reliably investigate electronic states of Nb and O by electron energy-loss spectroscopy as well as map elements whose transition edges exhibit a different energy range by energy-dispersive X-ray spectroscopy like Au and Al. The results conclusively demonstrate significant oxidation of the bottom electrode as well as a small oxygen vacancy concentration in the Al oxide tunnel barrier. Possible scenarios to explain this unexpected additional oxide layer are discussed and kinetic Monte Carlo simulations were applied in order to identify its influence on conduction mechanisms in the device. In light of the deviations between observed and originally sought layout, this study highlights the robustness of the memristive function in terms of structural deviations of the double barrier memristor device. © 2017 Author(s).

  • 2017 • 299
    Monodispersed Mesoporous Silica Spheres Supported Co3O4 as Robust Catalyst for Oxygen Evolution Reaction
    Deng, X. and Rin, R. and Tseng, J.-C. and Weidenthaler, C. and Apfel, U.-P. and Tüysüz, H.
    CHEMCATCHEM. Volume: 9 (2017)
    view abstract10.1002/cctc.201701001

    Monodispersed mesoporous silica spheres (MSS) with fibrous nanostructure and highly open porosity were fabricated by a facile one-pot synthetic route and loaded with Co3O4 nanoclusters for catalyzing the oxygen evolution reaction with Ru(bpy)3 2+–S2O8 2− photosensitizer and sacrificial reagent system. The effect of the loading amount on the morphology and microstructure of Co3O4 was investigated and it was found that lower Co3O4 content in the composite materials results in smaller crystallite size, which in turn leads to significantly enhanced oxygen evolution activity. Furthermore, owing to the monodispersity of the spheres and good accessibility of active species offered by the fibrous pore structure, the material shows a clear advantage over nonsupported Co3O4 nanoparticles and the commonly used ordered mesoporous silica supports such as KIT-6 and SBA-15. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 298
    Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media
    Li, J. and Stein, H.S. and Sliozberg, K. and Liu, J. and Liu, Y. and Sertic, G. and Scanley, E. and Ludwig, Al. and Schroers, J. and Schuhmann, W. and Taylor, A.D.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 5 (2017)
    view abstract10.1039/C6TA08088J

    The implementation of electrochemical systems such as fuel cells has been hindered by the slow development of low cost high activity catalysts. Here we examine the oxygen reduction reaction performance of a combinatorial Pd-Au-Ag-Ti thin film library using high-throughput screening and correlate the electrochemical behavior to the crystallographic properties. We find compositions of ca. 40-60 at% Pd and 30-35 at% Au exhibit both a low overpotential of close to the value of pure Pt as well as high current density. We also observe a volcano-like relationship between the overpotential and the solid formation strain. This study provides compositional guidance towards the future synthesis of nanostructured quaternary Pd-Au-Ag-Ti alloys and suggests the potential for broader application of high-throughput electrochemical characterization by means of an automatic scanning droplet cell. © The Royal Society of Chemistry.

  • 2017 • 297
    Unraveling compositional effects on the light-induced oxygen evolution in Bi(V-Mo-X)O4 material libraries
    Gutkowski, R. and Khare, C. and Conzuelo, F. and Kayran, Y.U. and Ludwig, Al. and Schuhmann, W.
    ENERGY AND ENVIRONMENTAL SCIENCE. Volume: 10 (2017)
    view abstract10.1039/c7ee00287d

    The influence of co-deposited transition metals X (X = Ta, W, Nb) with various relative concentrations on the photoelectrochemical performance of BiVO4 is investigated. Thin film material libraries with well-defined composition gradients of Bi, V and two transition metals are fabricated by combinatorial sputter co-deposition. Materials with the highest photoelectrochemical performance are identified by high-throughput characterization of the Bi(V-Mo-X)O4 material libraries using an optical scanning droplet cell. Bi(V-Mo-W)O4 and Bi(V-Mo-Nb)O4 material libraries show the highest improvement in the photocurrent, with ten times higher photocurrents of up to 1 mA cm-2 compared to a BiVO4 reference material library. Deviations from the V:Bi equiatomic ratio lead to a decrease in the photocurrent for pristine monoclinic BiVO4. By the addition of transition metals this effect is minimized and no significant decrease in the photocurrent occurs up to 10 at% variation from the equiatomic V:Bi ratio. Excellent photoelectrochemical performance is reached under these conditions in regions with a V:Bi atomic ratio of 70:30 and co-deposited Nb concentrations of >10 at%. Scanning photoelectrochemical microscopy allows the evaluation of the correlation between the generated oxygen at a photoanode and the measured photocurrent. © 2017 The Royal Society of Chemistry.

  • 2017 • 296
    Gold-Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity
    Pizzutilo, E. and Freakley, S.J. and Cherevko, S. and Venkatesan, S. and Hutchings, G.J. and Liebscher, C.H. and Dehm, G. and Mayrhofer, K.J.J.
    ACS CATALYSIS. Volume: 7 (2017)
    view abstract10.1021/acscatal.7b01447

    During application, electrocatalysts are exposed to harsh electrochemical conditions, which can induce degradation. This work addresses the degradation of AuPd bimetallic catalysts used for the electrocatalytic production of hydrogen peroxide (H2O2) by the oxygen reduction reaction (ORR). Potential-dependent changes in the AuPd surface composition occur because the two metals have different dissolution onset potentials, resulting in catalyst dealloying. Using a scanning flow cell (SFC) with an inductively coupled plasma mass spectrometer (ICP-MS), simultaneous Pd and/or Au dissolution can be observed. Thereafter, three accelerated degradation protocols (ADPs), simulating different dissolution regimes, are employed to study the catalyst structure degradation on the nanoscale with identical location (IL) TEM. When only Pd or both Au and Pd dissolve, the composition changes rapidly and the surface becomes enriched with Au, as observed by cyclic voltammetry and elemental mapping. Such changes are mirrored by the evolution of electrocatalytic performances toward H2O2 production. Our experimental findings are finally summarized in a dissolution/structure/selectivity mechanism, providing a clear picture of the degradation of bimetallic catalyst used for H2O2 synthesis. © 2017 American Chemical Society.

  • 2017 • 295
    Consecutive imprinting performance of large area UV nanoimprint lithography using Bi-layer soft stamps in ambient atmosphere
    Si, S. and Hoffmann, M.
    MICROELECTRONIC ENGINEERING. Volume: 176 (2017)
    view abstract10.1016/j.mee.2017.01.032

    For UV nanoimprint lithography (UV-NIL) using polymer soft stamps, imprinting at ambient atmosphere brings additional challenges due to evaporated solvents and possible byproducts resulting from the interaction between the UV light, oxygen and the polymer-based material. Moreover, the Laplace pressure may impact differently on the capillary filling for both positive and negative patterns at atmospheric pressure compared to that in the vacuum. Twenty consecutive imprints using bi-layer Polydimethylsiloxane (PDMS), PDMS/toluene-diluted PDMS, PDMS/X-PDMS, PDMS/vvsPDMS stamps have been tracked and inspected. The imprinting employs a center-to-edge scheme in ambient atmosphere. The results show that high reusability and imprint uniformity can be achieved for at least twenty consecutive imprints using the pure PDMS (PDMS/PDMS) and PDMS/toluene-diluted PDMS. These stamps can overcome the challenges of the interaction between the UV light, oxygen and the polymer-based materials. The Laplace pressure under atmosphere does not hinder the resist filling for such consecutive imprints. © 2017 Elsevier B.V.

  • 2017 • 294
    Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study
    Bakan, E. and Marcano, D. and Zhou, D. and Sohn, Y.J. and Mauer, G. and Vaßen, R.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 26 (2017)
    view abstract10.1007/s11666-017-0574-1

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber. © 2017, ASM International.

  • 2017 • 293
    Plasma diagnostics in dielectric deposition processes
    Schulz, C. and Rolfes, I.
    PROCEEDINGS OF IEEE SENSORS. Volume: (2017)
    view abstract10.1109/ICSENS.2016.7808810

    This contribution presents an in-situ plasma probe, which is capable to measure precisely in the challenging environment of deposition processes. The probe is inserted into the plasma in order to determine critical parameters, which are required for a process control. Therefore, the effects of deposited dielectric materials, which adsorb onto the probe, are investigated within numerous pseudo deposition processes by 3D electromagnetic field simulations. Here, the adsorbed material is varied in its relative permittivity and layer thickness for two different loss tangents. The corresponding evaluations demonstrate the suitability and the prospects of the probe within these simulations. The final measurements in an argon-oxygen plasma, depositing TiO2, confirm the insensitivity of the probe. © 2016 IEEE.

  • 2017 • 292
    Collision frequency determination of low-pressure plasmas based on RF-reflectometry
    Schulz, C. and Rolfes, I. and Oberberg, M. and Awakowicz, P.
    EUROPEAN MICROWAVE WEEK 2016: "MICROWAVES EVERYWHERE", EUMW 2016 - CONFERENCE PROCEEDINGS; 46TH EUROPEAN MICROWAVE CONFERENCE, EUMC 2016. Volume: (2017)
    view abstract10.1109/EuMC.2016.7824466

    This paper introduces a robust collision frequency determination of low-pressure plasma processes. Based on the multipole resonance probe and in-situ reflection measurements, the input admittance of the system probe-plasma can be calculated. It can be used to determine the collision frequency via its width. The proposed evaluation is investigated by numerous parameter variations within 3D electromagnetic field simulations. For plasma electron frequencies, which can be determined simultaneously, over 4 GHz or collision frequencies below 200 MHz, a two-step compensation is necessary for reliable results. Based on the proposed compensation, a maximum error of ± 5% can be reached within the simulations. The final measurements in an argon-oxygen plasma confirm the suitability of the presented evaluation. © 2016 EuMA.

  • 2017 • 291
    Comparison of Langmuir probe and multipole resonance probe measurements in argon, hydrogen, nitrogen, and oxygen mixtures in a double ICP discharge
    Fiebrandt, M. and Oberberg, M. and Awakowicz, P.
    JOURNAL OF APPLIED PHYSICS. Volume: 122 (2017)
    10.1063/1.4991493
  • 2017 • 290
    Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni 1-y-z Fe y Cr z O x
    Schwanke, C. and Stein, H.S. and Xi, L. and Sliozberg, K. and Schuhmann, W. and Ludwig, Al. and Lange, K.M.
    SCIENTIFIC REPORTS. Volume: 7 (2017)
    view abstract10.1038/srep44192

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni 1-y-zFe y Cr z O x was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of Ni II and Cr III remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to Fe III in O h symmetry and Fe III in T d symmetry. The ratio of Fe III O h to Fe III T d increases with the amount of Cr and a correlation between the presence of the Fe III O h and a high OER activity is found.

  • 2017 • 289
    Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction
    Antoni, H. and Xia, W. and Masa, J. and Schuhmann, W. and Muhler, M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS. Volume: 19 (2017)
    view abstract10.1039/c7cp02717f

    Manganese oxides are promising electrocatalysts for the oxygen evolution reaction due to their versatile redox properties. Manganese oxide (MnOx) nanoparticles were synthesized on oxygen- and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) by calcination in air of Mn-impregnated CNTs with a loading of 10 wt% Mn. The calcined samples were exposed to reducing conditions by thermal treatment in H2 or NH3, and to strongly oxidizing conditions using HNO3 vapor, which enabled us to flexibly tune the oxidation state of Mn from 2+ in MnO to 4+ in MnO2. The samples were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy and temperature-programmed reduction. The oxidation state of Mn was more easily changed in the MnOx/NCNTs samples compared with the MnOx/OCNTs samples. Furthermore, the reduction of MnO2 to MnO occurred in one-step on NCNTs, whereas Mn2O3 intermediate states were observed for OCNTs. STEM and TEM images revealed a smaller and uniform dispersion of the MnOx nanoparticles on NCNTs as compared to OCNTs. Electrocatalytic oxygen evolution tests in 0.1 M KOH showed that Mn in high oxidation states, specifically 4+ as in MnO2 generated by HNO3 vapor treatment, is more active than Mn in lower oxidation states, using the potential at 10 mA cm-2 and the Tafel slopes as the performance metrics. © the Owner Societies 2017.

  • 2017 • 288
    From the Precursor to the Active State: Monitoring Metamorphosis of Electrocatalysts During Water Oxidation by In Situ Spectroscopy
    Hollmann, D. and Rockstroh, N. and Grabow, K. and Bentrup, U. and Rabeah, J. and Polyakov, M. and Surkus, A.-E. and Schuhmann, W. and Hoch, S. and Brückner, A.
    CHEMELECTROCHEM. Volume: 4 (2017)
    view abstract10.1002/celc.201700142

    In situ Raman and in situ EPR spectroscopy in combination with electrochemistry have been used to investigate the behavior of mixed cobalt nickel and cobalt copper oxides in the oxygen evolution reaction (OER). All experiments were carried out in homemade electrochemical cells using 0.1 M KOH as the electrolyte. The OER activities vary depending on the annealing conditions of the catalyst precursors, also reflected by different behaviours during the in situ spectroscopic experiments. The different activity of the Co/Ni oxides is most likely related to the formation of either γ- or β-NiO(OH), characterized by distinct features in the Raman spectra. Thus, a higher percentage of β-NiO(OH) is present in the more active catalyst. A different behaviour of Co/Cu catalysts has been shown by in situ Raman spectroscopy too, but the active phase could not be identified because of missing spectral features. However, in situ EPR spectroscopy revealed the partial dissolution of Cu(II), suggesting the formation of a Co-enriched oxide/hydroxide surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 287
    Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil
    Cao, Z. and Engelhardt, J. and Dierks, M. and Clough, M.T. and Wang, G.-H. and Heracleous, E. and Lappas, A. and Rinaldi, R. and Schüth, F.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 56 (2017)
    view abstract10.1002/anie.201610405

    A simple and efficient hydrodeoxygenation strategy is described to selectively generate and separate high-value alkylphenols from pyrolysis bio-oil, produced directly from lignocellulosic biomass. The overall process is efficient and only requires low pressures of hydrogen gas (5 bar). Initially, an investigation using model compounds indicates that MoCx/C is a promising catalyst for targeted hydrodeoxygenation, enabling selective retention of the desired Ar−OH substituents. By applying this procedure to pyrolysis bio-oil, the primary products (phenol/4-alkylphenols and hydrocarbons) are easily separable from each other by short-path column chromatography, serving as potential valuable feedstocks for industry. The strategy requires no prior fractionation of the lignocellulosic biomass, no further synthetic steps, and no input of additional (e.g., petrochemical) platform molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 286
    Powder Catalyst Fixation for Post-Electrolysis Structural Characterization of NiFe Layered Double Hydroxide Based Oxygen Evolution Reaction Electrocatalysts
    Andronescu, C. and Barwe, S. and Ventosa, E. and Masa, J. and Vasile, E. and Konkena, B. and Möller, S. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 56 (2017)
    view abstract10.1002/anie.201705385

    Highly active electrocatalysts for the oxygen evolution (OER) reaction are in most cases powder nanomaterials, which undergo substantial changes upon applying the high potentials required for high-current-density oxygen evolution. Owing to the vigorous gas evolution, the durability under OER conditions is disappointingly low for most powder electrocatalysts as there are no strategies to securely fix powder catalysts onto electrode surfaces. Thus reliable studies of catalysts during or after the OER are often impaired. Herein, we propose the use of composites made from precursors of polybenzoxazines and organophilically modified NiFe layered double hydroxides (LDHs) to form a stable and highly conducting catalyst layer, which allows the study of the catalyst before and after electrocatalysis. Characterization of the material by XRD, SEM, and TEM before and after 100 h electrolysis in 5 m KOH at 60 °C and a current density of 200 mA cm−2 revealed previously not observed structural changes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 285
    The Influence of Water on the Performance of Molybdenum Carbide Catalysts in Hydrodeoxygenation Reactions: A Combined Theoretical and Experimental Study
    Engelhardt, J. and Lyu, P. and Nachtigall, P. and Schüth, F. and García, Á.M.
    CHEMCATCHEM. Volume: 9 (2017)
    view abstract10.1002/cctc.201700181

    Understanding the deactivation of transition-metal carbide catalysts during hydrodeoxygenation (HDO) reactions is of great importance for improving the production of the second generation fuels from biomass. Based on a combined experimental and theoretical study, we present a mechanistic model for the deactivation of molybdenum carbide catalysts during phenol HDO in the presence of water. At increased water pressure, water molecules preferentially bind to the surface, and active sites are no longer accessible for phenol. In line with first principle calculations, experiments reveal that this process is fully reversible because the reduction of the water partial pressure results in a threefold increase in conversion. The direct deoxygenation of phenol was calculated to be the most favorable pathway, which is governed by the structure of the phenol adsorption complex on the surface at high hydrogen coverage. This is consistent with the experimentally observed high benzene selectivity (85 %) for phenol HDO over MoCx/HCS (hollow carbon spheres) catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 284
    Mechanisms of oxygen permeation through plastic films and barrier coatings
    Wilski, S. and Wipperfürth, J. and Jaritz, M. and Kirchheim, D. and Mitschker, F. and Awakowicz, P. and Dahlmann, R. and Hopmann, C.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 50 (2017)
    view abstract10.1088/1361-6463/aa8525

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 μm) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiOx-coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. © 2017 IOP Publishing Ltd.

  • 2017 • 283
    Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3
    Marusczyk, A. and Albina, J.-M. and Hammerschmidt, T. and Drautz, R. and Eckl, T. and Henkelman, G.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 5 (2017)
    view abstract10.1039/c7ta04164k

    In the search for high energy density battery materials, over-lithiated transition metal oxides have attracted the attention of many researchers worldwide. There is, however, no consensus regarding the underlying mechanisms that give rise to the large capacities and also cause the electrochemical degradation upon cycling. As a key component and prototype phase, Li2MnO3 is investigated using density functional theory. Our calculations show that hole doping into the oxygen bands is the primary charge compensation mechanism in the first stage of delithiation. Upon further delithiation, there is an energetic driving force for peroxide formation with an optimal number of peroxide dimers that is predicted as a function of lithium concentration. Unlike the defect-free phases, the peroxide structures are highly stable, which leads to two competing mechanisms for charge compensation: (i) oxygen loss and densification at the surface and (ii) peroxide formation in the bulk. Our results show that both have a detrimental effect on the electrochemical performance and therefore the stabilization of oxygen in the crystal lattice is vital for the development of high energy cathode materials. The insights into the origin and implications of peroxide formation open the door for a more profound understanding of the degradation mechanism and how to counteract it. © The Royal Society of Chemistry 2017.

  • 2017 • 282
    Influence of PE-CVD and PE-ALD on defect formation in permeation barrier films on PET and correlation to atomic oxygen fluence
    Mitschker, F. and Steves, S. and Gebhard, M. and Rudolph, M. and Schücke, L. and Kirchheim, D. and Jaritz, M. and Brochhagen, M. and Hoppe, C. and Dahlmann, R. and Böke, M. and Benedikt, J. and Giner, I. and De los Arcos, T. and Hopmann, C. and Grundmeier, G. and Devi, A. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 50 (2017)
    10.1088/1361-6463/aa6e28
  • 2017 • 281
    MOF-Templated Assembly Approach for Fe3C Nanoparticles Encapsulated in Bamboo-Like N-Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions
    Aijaz, A. and Masa, J. and Rösler, C. and Antoni, H. and Fischer, R.A. and Schuhmann, W. and Muhler, M.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: (2017)
    view abstract10.1002/chem.201701389

    Developing high-performance non-precious metal catalysts (NPMCs) for the oxygen-reduction reaction (ORR) is of critical importance for sustainable energy conversion. We report a novel NPMC consisting of iron carbide (Fe3C) nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes (b-NCNTs), synthesized by a new metal-organic framework (MOF)-templated assembly approach. The electrocatalyst exhibits excellent ORR activity in 0.1m KOH (0.89V at -1mAcm-2) and in 0.5m H2SO4 (0.73V at -1mAcm-2) with a hydrogen peroxide yield of below 1% in both electrolytes. Due to encapsulation of the Fe3C nanoparticles inside porous b-NCNTs, the reported NPMC retains its high ORR activity after around 70hours in both alkaline and acidic media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2017 • 280
    Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol
    Dong, W. and Xia, W. and Xie, K. and Peng, B. and Muhler, M.
    CARBON. Volume: 121 (2017)
    view abstract10.1016/j.carbon.2017.06.019

    Surface functionalization of carbon nanotubes (CNTs) was achieved by a thermal treatment in the presence of pre-adsorbed potassium hydroxide and steam at 350–550 °C. The generated oxygen-containing functional groups were more basic and thermally stable compared with conventional acid-generated groups. The influence of the KOH-steam co-treatment conditions on the functionalization of CNTs was systematically investigated. Residual K species were found to intercalate in the inner graphene layers of the CNTs providing additional Brønsted basicity. Owing to the favorable basic properties and high thermal stability of the generated functional groups, Pd nanoparticles supported on the co-treated CNTs were found to be strongly anchored leading to a high degree of Pd dispersion and a high resistance to sintering. The Pd nanoparticles on the co-treated CNT support produced at 450 °C and 550 °C showed the highest activity and yields of acetic acid in the aerobic oxidation of aqueous ethanol reaching almost full conversion after 5 h in the absence of additional base. In addition, the KOH-steam co-treatment was found to enhance the recyclability of the Pd/CNT catalysts. © 2017 Elsevier Ltd

  • 2017 • 279
    Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction
    Yang, F. and Sliozberg, K. and Sinev, I. and Antoni, H. and Bähr, A. and Ollegott, K. and Xia, W. and Masa, J. and Grünert, W. and Cuenya, B.R. and Schuhmann, W. and Muhler, M.
    CHEMSUSCHEM. Volume: 10 (2017)
    view abstract10.1002/cssc.201601272

    Co-based layered double hydroxide (LDH) catalysts with Fe and Al contents in the range of 15 to 45 at % were synthesized by an efficient coprecipitation method. In these catalysts, Fe3+ or Al3+ ions play an essential role as trivalent species to stabilize the LDH structure. The obtained catalysts were characterized by a comprehensive combination of surface- and bulk-sensitive techniques and were evaluated for the oxygen evolution reaction (OER) on rotating disk electrodes. The OER activity decreased upon increasing the Al content for the Co- and Al-based LDH catalysts, whereas a synergistic effect in Co- and Fe-based LDHs was observed, which resulted in an optimal Fe content of 35 at %. This catalyst was spray-coated on Ni foam electrodes and showed very good stability in a flow-through cell with a potential of approximately 1.53 V at 10 mA cm−2 in 1 m KOH for at least 48 h. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 278
    Influence of Ni to Co ratio in mixed Co and Ni phosphides on their electrocatalytic oxygen evolution activity
    Barwe, S. and Andronescu, C. and Vasile, E. and Masa, J. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 79 (2017)
    view abstract10.1016/j.elecom.2017.04.014

    Prompted by the impact of Ni-based support materials on the intrinsic activity of electrocatalysts, we investigated the influence of partial Co substitution by Ni during the reductive thermal synthesis of cobalt-cobalt phosphide nanoparticles from triphenylphosphine complexes. The obtained catalysts were characterised by X-ray diffraction and electrochemistry. Increasing the amount of Ni in the precursor complexes leads to materials with lower overpotential for the OER at low current densities, and lower Tafel slopes. Co nanoparticles, which are only formed in materials with low Ni content, increase the intrinsic material conductivity and reduce the OER overpotential at high current densities. © 2017

  • 2017 • 277
    Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition
    Sun, Long and Lu, Hong-Liang and Chen, Hong-Yan and Wang, Tao and Ji, Xin-Ming and Liu, Wen-Jun and Zhao, Dongxu and Devi, Anjana and Ding, Shi-Jin and Zhang, David Wei
    NANOSCALE RESEARCH LETTERS. Volume: 12 (2017)
    view abstract10.1186/s11671-016-1822-x

    The influences of annealing temperature in N-2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N-2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-AI bonding state can be detected in the 900 degrees C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.

  • 2017 • 276
    Ultrathin High Surface Area Nickel Boride (NixB) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution
    Masa, J. and Sinev, I. and Mistry, H. and Ventosa, E. and de la Mata, M. and Arbiol, J. and Muhler, M. and Roldan Cuenya, B. and Schuhmann, W.
    ADVANCED ENERGY MATERIALS. Volume: (2017)
    view abstract10.1002/aenm.201700381

    The overriding obstacle to mass production of hydrogen from water as the premium fuel for powering our planet is the frustratingly slow kinetics of the oxygen evolution reaction (OER). Additionally, inadequate understanding of the key barriers of the OER is a hindrance to insightful design of advanced OER catalysts. This study presents ultrathin amorphous high-surface area nickel boride (NixB) nanosheets as a low-cost, very efficient and stable catalyst for the OER for electrochemical water splitting. The catalyst affords 10 mA cm-2 at 0.38 V overpotential during OER in 1.0 m KOH, reducing to only 0.28 V at 20 mA cm-2 when supported on nickel foam, which ranks it among the best reported nonprecious catalysts for oxygen evolution. Operando X-ray absorption fine-structure spectroscopy measurements reveal prevalence of NiOOH, as well as Ni-B under OER conditions, owing to a Ni-B core at nickel oxyhydroxide shell (Ni-B at NiOxH) structure, and increase in disorder of the NiOxH layer, thus revealing important insight into the transient states of the catalyst during oxygen evolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2017 • 275
    Comparative ignition tests of coal under oxy-fuel conditions in a standardized laboratory test rig
    Becker, A. and Schiemann, M. and Scherer, V. and Shaddix, C. and Haxter, D. and Mayer, J.
    FUEL. Volume: 208 (2017)
    view abstract10.1016/j.fuel.2017.06.129

    Ignitability is important to characterize pulverized coal combustion, as it is directly related to flame stability. The current work describes a practical test rig for rapid laboratory analysis of pulverized coal cloud ignition properties. The system has been designed for conventional coal combustion conditions using air as the oxidant. In the current work, the measurement principle of the device is described and its adaption to and applicability for oxy-fuel combustion tests is demonstrated. Four coals with different rank were measured in air and in oxy-fuel atmospheres containing 20–35 vol% O2 in CO2. The major influencing factors for the investigated samples were found to be the coal rank and the gas-phase oxygen concentration, while a minor influence of particle size was observed. © 2017 Elsevier Ltd

  • 2017 • 274
    Hands-on Guide to the Synthesis of Mesoporous Hollow Graphitic Spheres and Core-Shell Materials
    Knossalla, J. and Jalalpoor, D. and Schüth, F.
    CHEMISTRY OF MATERIALS. Volume: 29 (2017)
    view abstract10.1021/acs.chemmater.7b02645

    In this work we present a detailed preparation method for mesoporous hollow graphitic spheres (HGS) that has been developed in our laboratory over recent years. The aim of this description is to enable the reader to reproduce the procedure by highlighting important steps, conditions, and challenges during the synthesis. HGS have initially been developed as a carbon support to enhance the stability of metal catalysts in the oxygen reduction reaction (ORR) of PEM fuel cells via pore confinement. The HGS are synthesized in a multistep procedure employing a core-shell silica template, DVB as carbon source, and iron as graphitization catalyst. The silica template is removed by leaching with hydrofluoric acid yielding the mesoporous carbon support, where metal catalysts can be introduced via incipient wetness method followed by a reduction in hydrogen. The whole procedure allows high control over product parameters such as core or shell diameter and graphitization degree. Thus, it can be adapted and tuned to match the desired properties of high performance materials for various potential applications. © 2017 American Chemical Society.

  • 2017 • 273
    High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Framework/Graphene Aerogel Composite
    Xia, W. and Qu, C. and Liang, Z. and Zhao, B. and Dai, S. and Qiu, B. and Jiao, Y. and Zhang, Q. and Huang, X. and Guo, W. and Dang, D. and Zou, R. and Xia, D. and Xu, Q. and Liu, M.
    NANO LETTERS. Volume: 17 (2017)
    view abstract10.1021/acs.nanolett.6b05004

    Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities. © 2017 American Chemical Society.

  • 2017 • 272
    Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis
    Song, H. and Laudenschleger, D. and Carey, J.J. and Ruland, H. and Nolan, M. and Muhler, M.
    ACS CATALYSIS. Volume: 7 (2017)
    view abstract10.1021/acscatal.7b01822

    A series of ZnO/Cr2O3 catalysts with different Zn:Cr ratios was prepared by coprecipitation at a constant pH of 7 and applied in methanol synthesis at 260-300 °C and 60 bar. The X-ray diffraction (XRD) results showed that the calcined catalysts with ratios from 65:35 to 55:45 consist of ZnCr2O4 spinel with a low degree of crystallinity. For catalysts with Zn:Cr ratios smaller than 1, the formation of chromates was observed in agreement with temperature-programmed reduction results. Raman and XRD results did not provide evidence for the presence of segregated ZnO, indicating the existence of Zn-rich nonstoichiometric Zn-Cr spinel in the calcined catalyst. The catalyst with Zn:Cr = 65:35 exhibits the best performance in methanol synthesis. The Zn:Cr ratio of this catalyst corresponds to that of the Zn4Cr2(OH)12CO3 precursor with hydrotalcite-like structure obtained by coprecipitation, which is converted during calcination into a nonstoichiometric Zn-Cr spinel with an optimum amount of oxygen vacancies resulting in high activity in methanol synthesis. Density functional theory calculations are used to examine the formation of oxygen vacancies and to measure the reducibility of the methanol synthesis catalysts. Doping Cr into bulk and the (10-10) surface of ZnO does not enhance the reducibility of ZnO, confirming that Cr:ZnO cannot be the active phase. The (100) surface of the ZnCr2O4 spinel has a favorable oxygen vacancy formation energy of 1.58 eV. Doping this surface with excess Zn charge-balanced by oxygen vacancies to give a 60% Zn content yields a catalyst composed of an amorphous ZnO layer supported on the spinel with high reducibility, confirming this as the active phase for the methanol synthesis catalyst. © 2017 American Chemical Society.

  • 2017 • 271
    Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst
    Elumeeva, K. and Masa, J. and Medina, D. and Ventosa, E. and Seisel, S. and Kayran, Y.U. and Genç, A. and Bobrowski, T. and Weide, P. and Arbiol, J. and Muhler, M. and Schuhmann, W.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 5 (2017)
    view abstract10.1039/c7ta06995b

    The development of reversible oxygen electrodes, able to drive both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), is still a great challenge. We describe a very efficient and stable bifunctional electrocatalytic system for reversible oxygen electrodes obtained by direct CVD growth of nitrogen-doped carbon nanotubes (NCNTs) on the surface of cobalt boride (CoB) nanoparticles. A detailed investigation of the crystalline structure and elemental distribution of CoB before and after NCNT growth reveals that the NCNTs grow on small CoB nanoparticles formed in the CVD process. The resultant CoB/NCNT system exhibited outstanding activity in catalyzing both the OER and the ORR in 0.1 M KOH with an overvoltage difference of only 0.73 V between the ORR at -1 mA cm-2 and the OER at +10 mA cm-2. The proposed CoB/NCNT catalyst showed stable performance during 50 h of OER stability assessment in 0.1 M KOH. Moreover, CoB/NCNT spray-coated on a gas diffusion layer as an air-breathing electrode proved its high durability during 170 galvanostatic charge-discharge (OER/ORR) test cycles (around 30 h) at ±10 mA cm-2 in 6 M KOH, making it an excellent bifunctional catalyst for potential Zn-air battery application. © 2017 The Royal Society of Chemistry.

  • 2017 • 270
    Co3O4@Co/NCNT Nanostructure Derived from a Dicyanamide-Based Metal-Organic Framework as an Efficient Bi-functional Electrocatalyst for Oxygen Reduction and Evolution Reactions
    Sikdar, N. and Konkena, B. and Masa, J. and Schuhmann, W. and Maji, T.K.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 23 (2017)
    view abstract10.1002/chem.201704211

    There has been growing interest in the synthesis of efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reactions (OER), for their potential use in a variety of renewable energy technologies, such as regenerative fuel cells and metal-air batteries. Here, a bi-functional electrocatalyst, derived from a novel dicyanamide based nitrogen rich MOF {[Co(bpe)2(N(CN)2)]⋅(N(CN)2)⋅(5 H2O)}n [Co-MOF-1, bpe=1,2-bis(4-pyridyl)ethane, N(CN)2 −=dicyanamide] under different pyrolysis conditions is reported. Pyrolysis of the Co-MOF-1 under Ar atmosphere (at 800 °C) yielded a Co nanoparticle-embedded N-doped carbon nanotube matrix (Co/NCNT-Ar) while pyrolysis under a reductive H2/Ar atmosphere (at 800 °C) and further mild calcination yielded Co3O4@Co core–shell nanoparticle-encapsulated N-doped carbon nanotubes (Co3O4@Co/NCNT). Both catalysts show bi-functional activity towards ORR and OER, however, the core–shell Co3O4@Co/NCNT nanostructure exhibited superior electrocatalytic activity for both the ORR with a potential of 0.88 V at a current density of −1 mA cm−2 and the OER with a potential of 1.61 V at 10 mA cm−2, which is competitive with the most active bi-functional catalysts reported previously. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 269
    Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content
    Bergholz, J. and Pint, B.A. and Unocic, K.A. and Vaßen, R.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: (2017)
    view abstract10.1007/s11666-017-0550-9

    Nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organic additive stearic acid on the manufacturing process of Al2O3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles. © 2017 ASM International

  • 2017 • 268
    Polybenzoxazine-Derived N-doped Carbon as Matrix for Powder-Based Electrocatalysts
    Barwe, S. and Andronescu, C. and Masa, J. and Ventosa, E. and Klink, S. and Genç, A. and Arbiol, J. and Schuhmann, W.
    CHEMSUSCHEM. Volume: 10 (2017)
    view abstract10.1002/cssc.201700593

    In addition to catalytic activity, intrinsic stability, tight immobilization on a suitable electrode surface, and sufficient electronic conductivity are fundamental prerequisites for the long-term operation of particle- and especially powder-based electrocatalysts. We present a novel approach to concurrently address these challenges by using the unique properties of polybenzoxazine (pBO) polymers, namely near-zero shrinkage and high residual-char yield even after pyrolysis at high temperatures. Pyrolysis of a nanocubic prussian blue analogue precursor (KmMnx[Co(CN)6]y⋅n H2O) embedded in a bisphenol A and aniline-based pBO led to the formation of a N-doped carbon matrix modified with MnxCoyOz nanocubes. The obtained electrocatalyst exhibits high efficiency toward the oxygen evolution reaction (OER) and more importantly a stable performance for at least 65 h. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 267
    Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution
    Jayaramulu, K. and Masa, J. and Tomanec, O. and Peeters, D. and Ranc, V. and Schneemann, A. and Zboril, R. and Schuhmann, W. and Fischer, R.A.
    ADVANCED FUNCTIONAL MATERIALS. Volume: (2017)
    view abstract10.1002/adfm.201700451

    Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen-doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well-known nickel-based metal-organic framework (NiMOF-74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2017 • 266
    Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide
    Peng, Z. and Rohwerder, M. and Choi, P.-P. and Gault, B. and Meiners, T. and Friedrichs, M. and Kreilkamp, H. and Klocke, F. and Raabe, D.
    CORROSION SCIENCE. Volume: 120 (2017)
    view abstract10.1016/j.corsci.2017.01.007

    We investigated the temporal degradation of glass moulding dies, made of cemented tungsten carbide coated with PtIr on an adhesive Cr or Ni interlayer, by electron microscopy and atom probe tomography. During the exposure treatments at 630 °C under an oxygen partial pressure of 1.12 × 10−23 bar, Cr (Ni) was found to diffuse outwards via grain boundaries in the PtIr, altering the surface morphology. Upon dissolution of the interlayer, the WC substrate also started degrading. Extensive interdiffusion processes involving PtIr, Cr (Ni) and WC took place, leading to the formation of intermetallic phases and voids, deteriorating the adhesion of the coating. © 2017 The Authors

  • 2017 • 265
    Measurement of Ar resonance and metastable level number densities in argon containing plasmas
    Fiebrandt, M. and Hillebrand, B. and Spiekermeier, S. and Bibinov, N. and Böke, M. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 50 (2017)
    view abstract10.1088/1361-6463/aa7d67

    The resonance 1s4 (3P1), 1s2 (1P1) and metastable 1s5 (3P2), 1s3 (3P0) level number densities of argon are determined by means of the branching fraction method in an inductively coupled plasma at 5 Pa and 10 Pa in argon with admixture of hydrogen, nitrogen and oxygen. The 1s5 (3P2) densities are compared to laser absorption spectroscopy measurements to evaluate the reliability of the branching fraction method and its limitations. The results are in good agreement and the use of a compact, low cost, low resolution spectrometer (Δλ = 1.3 nm) is sufficient to reliably determine the first four excited states of argon in argon-hydrogen and argon-oxygen mixtures. The addition of nitrogen results in unreliable densities, as the observed argon lines overlap with emission of the N2(B3Πg - A3∑+ u) transition. © 2017 IOP Publishing Ltd.

  • 2017 • 264
    Simulation of the effect of the porous support on flux through an asymmetric oxygen transport membrane
    Unije, U. and Mücke, R. and Niehoff, P. and Baumann, S. and Vaßen, R. and Guillon, O.
    JOURNAL OF MEMBRANE SCIENCE. Volume: 524 (2017)
    view abstract10.1016/j.memsci.2016.10.037

    Asymmetric membranes provide a low ionic resistance of the functional separation layer together with a high mechanical stability. However, the microstructure of the porous support in the membrane assembly affects the overall flux significantly. This effect was studied by applying the binary friction model (BFM) for the support together with a modified Wagner equation for the dense membrane using transport relevant parameters obtained from micro computed tomography data of a tape cast Ba0.5Sr0.5Co0.8Fe0.2O3– δ support. The influence of different pore diameters and thicknesses of the support were compared for different feed gases (oxygen and air) and flow configurations (3-end, 4-end, assembly orientation). The effect of the support at large pore diameters (>35 µm) for the 3-end mode transport process using oxygen as feed gas, was negligible. This was not the case for the 4-end mode irrespective of the feed gas, and for the 3-end mode using air as feed gas. This was attributed to the binary diffusion term in the BFM. Thin small-pored supports yield the same flux as thick large-pored supports considering a non-linear relationship between thickness and pore size. This can be used for the optimization of the support's microstructure with regards to mechanical strength and permeability. © 2016 Elsevier B.V.

  • 2017 • 263
    Graphene oxide reduction induced by femtosecond laser irradiation
    Kasischke, M. and Maragkaki, S. and Volz, S. and Gurevich, E.L. and Ostendorf, A.
    PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING. Volume: 10356 (2017)
    view abstract10.1117/12.2274976

    A promising fabrication method for graphene is the reduction of graphene oxide (GO), this can be achieved photochemically by laser irradiation. In this study, we examine the results of latter method by a femtosecond fiber laser (1030 nm, 280 fs). The chemical properties of the irradiated areas were analyzed by Raman and X-ray photoelectron spectroscopy (XPS) and electrical properties were evaluated using sheet resistance measurements. We found that, within a wide range of fluences (8.5 mJ/cm2to 57.8 mJ/cm2) at high overlapping rates (>99.45 %), photochemical oxygen reduction can be achieved. However, hybridization transition of sp3 to sp2 graphene-like structures only takes place at upper fluences of the mentioned range. © 2017 SPIE.

  • 2017 • 262
    Metal–Organic Framework Derived Carbon Nanotube Grafted Cobalt/Carbon Polyhedra Grown on Nickel Foam: An Efficient 3D Electrode for Full Water Splitting
    Aijaz, A. and Masa, J. and Rösler, C. and Xia, W. and Weide, P. and Fischer, R.A. and Schuhmann, W. and Muhler, M.
    CHEMELECTROCHEM. Volume: 4 (2017)
    view abstract10.1002/celc.201600452

    The growth of metal–organic framework (ZIF-67) nanocrystals on nickel foam (NF), followed by carbonization in diluted H2, leads to a nitrogen-doped carbon-nanotube-grafted cobalt/carbon polyhedra film on NF. The obtained material serves as a highly active binder-free electrocatalyst for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), enabling high-performance alkaline (0.1 m KOH) water electrolysis with potentials of 1.62 and 0.24 V, respectively, at OER and HER current densities of 10 mA cm−2. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2017 • 261
    Metallic NiPS3@NiOOH Core-Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction
    Konkena, B. and Masa, J. and Botz, A. J. R. and Sinev, I. and Xia, W. and Kossmann, J. and Drautz, R. and Muhler, M. and Schuhmann, W.
    ACS CATALYSIS. Volume: 7 (2017)
    view abstract10.1021/acscatal.6b02203

    We report metallic NiPS3@NiOOH core shell heterostructures as an efficient and durable electrocatalyst for the oxygen evolution reaction, exhibiting a low onset potential of 1.48 V (vs RHE) and stable performance for over 160 h. The atomically thin NiPS3 nanosheets are obtained by exfoliation of bulk NiPS3 in the presence of an ionic surfactant. The OER mechanism was studied by a combination of SECM, in situ Raman spectroscopy, SEM, and XPS measurements, which enabled direct observation of the formation of a NiPS3@NiOOH core shell heterostructure at the electrode interface. Hence, the active form of the catalyst is represented as NiPS3@NiOOH core shell structure. Moreover, DFT calculations indicate an intrinsic metallic character of the NiPS3 nanosheets with densities of states (DOS) similar to the bulk material. The high OER activity of the NiPS3 nanosheets is attributed to a high density of accessible active metallic-edge and defect sites due to structural disorder, a unique NiPS3@NiOOH core shell heterostructure, where the presence of P and S modulates the rface electronic structure of Ni in NiPS3, thus providing excellent conductive pathway for efficient electron-transport to the NiOOH shell. These findings suggest that good size control during liquid exfoliation may be advantageously used for the formation of electrically conductive NiPS3@ NiOOH core shell electrode materials for the electrochemical water oxidation.

  • 2017 • 260
    Temperature-dependent transport mechanisms through PE-CVD coatings: Comparison of oxygen and water vapour
    Kirchheim, D. and Wilski, S. and Jaritz, M. and Mitschker, F. and Gebhard, M. and Brochhagen, M. and Böe, M. and Benedikt, J. and Awakowicz, P. and Devi, A. and Hopmann, C. and Dahlmann, R.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 50 (2017)
    view abstract10.1088/1361-6463/aa80fd

    When it comes to thin coatings such as plasma-enhanced chemical vapour deposition or plasma-enhanced atomic layer deposition coatings on substrates of polymeric material, existing models often describe transport through these thin coatings as mainly driven by transport through defects of different sizes. However, temperature-dependent measurements of permeation could not confirm this hypothesis and instead gaseous transport through these thin coatings was found to more likely to occur through the molecular structure. This paper correlates existing transport models with data from oxygen transmission experiments and puts recent investigations for water vapour transmission mechanisms into context for a better understanding of gaseous transport through thin coatings. © 2017 IOP Publishing Ltd.

  • 2017 • 259
    Promotional Effect of Fe Impurities in Graphene Precursors on the Activity of MnOX/Graphene Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions
    Morales, D.M. and Masa, J. and Andronescu, C. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 4 (2017)
    view abstract10.1002/celc.201700496

    Bifunctional oxygen electrocatalysts were fabricated following a three-step synthesis method, which consisted of i) liquid-phase exfoliation of graphite in the presence of nitrogen-containing manganese macrocyclic complexes, using DMF as the dispersion medium under formation of few-layer graphene sheets. Subsequently, ii) solvent removal by vacuum filtration and drying, and iii) pyrolysis of the resulting composites under an inert gas atmosphere with subsequent mild calcination yielded manganese oxides embedded within a graphitic carbon matrix (MnOX/G). We further demonstrate that traces of Fe impurities in the used graphite result in enhanced electrocatalytic activity of the MnOX/G towards both the oxygen reduction and the oxygen evolution reactions, owing to synergistic interaction of the iron impurities with the species formed upon thermal decomposition of Mn macrocyclic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2016 • 258
    Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction
    Xie, K. and Xia, W. and Masa, J. and Yang, F. and Weide, P. and Schuhmann, W. and Muhler, M.
    JOURNAL OF ENERGY CHEMISTRY. Volume: 25 (2016)
    view abstract10.1016/j.jechem.2016.01.023

    RuO2 nanoparticles supported on multi-walled carbon nanotubes (CNTs) functionalized with oxygen (OCNTs) and nitrogen (NCNTs) were employed for the oxygen evolution reaction (OER) in 0.1 M KOH. The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl (Ru3(CO)12) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure-activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13-14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe. © 2016 Science Press and Dalian Institute of Chemical Physics. All rights reserved.

  • 2016 • 257
    The oxygen reduction reaction at the three-phase boundary: nanoelectrodes modified with Ag nanoclusters
    Clausmeyer, J. and Botz, A. and Öhl, D. and Schuhmann, W.
    FARADAY DISCUSSIONS. Volume: 193 (2016)
    view abstract10.1039/c6fd00101g

    Silver nanoclusters are deposited on bifunctional Θ-shaped nanoelectrodes consisting of a carbon nanoelectrode combined with a hollow nanopipette. The Θ-nanoelectrodes are used as model systems to study interfacial mass transport in gas diffusion electrodes and in particular oxygen-depolarized cathodes (ODC) for the oxygen reduction reaction (ORR) in chlor-alkali electrolysers. By local delivery of O2 gas to the electroactive Ag nanoclusters through the adjacent nanopipette, enhanced currents for the ORR at the Ag nanoparticles are recorded which are not accountable when considering the low solubility and slow diffusion of O2 in highly alkaline media. Instead, local oversaturation of O2 leads to current enhancement at the Ag nanoclusters. Due to the intrinsic high mass transport rates at the nanometric electrodes accompanied by local delivery of reactants, the method generally allows to study electrochemical reactions at single nanoparticles beyond the limitations induced by slow diffusion and low reactant concentration. Kinetic and mechanistic information, for instance derived from Tafel slopes, can be obtained from kinetic regimes not accessible to standard techniques. © The Royal Society of Chemistry.

  • 2016 • 256
    Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles
    Clausmeyer, J. and Masa, J. and Ventosa, E. and Öhl, D. and Schuhmann, W.
    CHEMICAL COMMUNICATIONS. Volume: 52 (2016)
    view abstract10.1039/c5cc08796a

    Individual Ni(OH)2 nanoparticles deposited on carbon nanoelectrodes are investigated in non-ensemble measurements with respect to their energy storage properties and electrocatalysis for the oxygen evolution reaction (OER). Charging by oxidation of Ni(OH)2 is limited by the diffusion of protons into the particle bulk and the OER activity is independent of the particle size. © 2016 The Royal Society of Chemistry.

  • 2016 • 255
    Intracellular Hydrogen Peroxide Detection with Functionalised Nanoelectrodes
    Marquitan, M. and Clausmeyer, J. and Actis, P. and Córdoba, A.L. and Korchev, Y. and Mark, M.D. and Herlitze, S. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 3 (2016)
    view abstract10.1002/celc.201600390

    Hydrogen peroxide (H2O2) is one of the most important reactive oxygen species, and it is involved in a number of cellular processes ranging from signal transduction to immune defence and oxidative stress. It is of great interest to intracellularly quantify H2O2 to improve the understanding of its role in disease processes. In this study, we present an amperometric nanosensor for the quantification of H2O2 at the single-cell level. Deposition of the electrocatalyst Prussian Blue on carbon nanoelectrodes enables selective H2O2 reduction at mild potentials. Owing to their small size and needle-type shape, these nanoelectrodes can penetrate the membrane of single living cells, causing only minimal perturbation. The nanosensors allow for the monitoring of penetration-induced oxidative outbursts as well as the uptake of H2O2 from the extracellular environment in single murine macrophages. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2016 • 254
    Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link between Experiments
    Cheng, B. and Behler, J. and Ceriotti, M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS. Volume: 7 (2016)
    view abstract10.1021/acs.jpclett.6b00729

    One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water. © 2016 American Chemical Society.

  • 2016 • 253
    Advanced Evaluation of the Long-Term Stability of Oxygen Evolution Electrocatalysts
    Maljusch, A. and Conradi, O. and Hoch, S. and Blug, M. and Schuhmann, W.
    ANALYTICAL CHEMISTRY. Volume: 88 (2016)
    view abstract10.1021/acs.analchem.6b01289

    Evaluation of the long-term stability of electrocatalysts is typically performed using galvanostatic polarization at a predefined current density. A stable or insignificant increase in the applied potential is usually interpreted as high long-term stability of the tested catalyst. However, effects such as (i) electrochemical degradation of a catalyst due to its oxidation, (ii) blocking of the catalyst surface by evolved gas bubbles, and (iii) detachment of the catalyst from the electrode surface may lead to a decrease of the catalyst's active surface area being exposed to the electrolyte. In order to separate these effects and to evaluate the true electrochemical degradation of electrocatalysts, an advanced evaluation protocol based on subsequently performed electrochemical impedance, double layer capacitance, cyclic voltammetry, and galvanostatic polarization measurements was developed and used to evaluate the degradation of IrO2 particles drop-coated on glassy carbon rotating disk electrode using Nafion as a binder. A flow-through electrochemical cell was developed enabling circulation of the electrolyte leading to an efficient removal of evolved oxygen bubbles even at high current densities of up to 250 mA/cm2. The degradation rate of IrO2 was evaluated over 225 test cycles (0.733 ± 0.022 mV/h) with a total duration of galvanostatic polarization measurements of over 55 h. © 2016 American Chemical Society.

  • 2016 • 252
    Traditional earth-abundant coal as new energy materials to catalyze the oxygen reduction reaction in alkaline solution
    Chen, X. and Huang, X. and Wang, T. and Barwe, S. and Xie, K. and Kayran, Y.U. and Wintrich, D. and Schuhmann, W. and Masa, J.
    ELECTROCHIMICA ACTA. Volume: 211 (2016)
    view abstract10.1016/j.electacta.2016.05.137

    Coal is an earth-abundant energy resource, however, its direct combustion results in serious environmental pollution. Therefore, it becomes important to design value-added products from coal and to maximize its value chain. Herein, brown coal was used to develop non-precious metal catalysts for the oxygen reduction reaction (ORR) in fuel cells as green energy conversion systems. The brown coal was first pretreated with different acids, followed by N-doping at 800 °C in a stream of NH3. A trace amount of Fe was further added to improve the electrocatalytic performance of the prepared catalyst towards ORR. The prepared coal-derived N-doped carbon further modified with 0.5% Fe exhibited onset potential of 0.92 V vs. RHE at a current density of -0.1 mA cm-2 and a predominantly 4-electron transfer pathway of oxygen to water in 0.1 M NaOH, which was evaluated by RDE and RRDE. The prepared electrocatalysts were further characterized by elemental analysis, XRD, Raman and XPS. The results suggest that the coal-derived ORR catalyst have convoluted graphitic and amorphous carbon structures. The N-content increased after acid-pretreatment and subsequent functionalization with nitrogen, while it slightly decreased after Fe incorporation apparently due to coordination of Fe with N. ORR activity enhancement after the incorporation of Fe is expected to mainly arise from a synergetic effect involving the interaction of Fe with N groups distributed in the carbon matrix. © 2016 Elsevier Ltd. All rights reserved.

  • 2016 • 251
    An efficient PE-ALD process for TiO2 thin films employing a new Ti-precursor
    Gebhard, M. and Mitschker, F. and Wiesing, M. and Giner, I. and Torun, B. and De Los Arcos, T. and Awakowicz, P. and Grundmeier, G. and Devi, A.
    JOURNAL OF MATERIALS CHEMISTRY C. Volume: 4 (2016)
    view abstract10.1039/c5tc03385c

    An efficient plasma-enhanced atomic layer deposition (PE-ALD) process was developed for TiO2 thin films of high quality, using a new Ti-precursor, namely tris(dimethylamido)-(dimethylamino-2-propanolato)titanium(iv) (TDMADT). The five-coordinated titanium complex is volatile, thermally stable and reactive, making it a potential precursor for ALD and PE-ALD processes. Process optimization was performed with respect to plasma pulse length and reactive gas flow rate. Besides an ALD window, the application of the new compound was investigated using in situ quartz-crystal microbalance (QCM) to monitor surface saturation and growth per cycle (GPC). The new PE-ALD process is demonstrated to be an efficient procedure to deposit stoichiometric titanium dioxide thin films under optimized process conditions with deposition temperatures as low as 60°C. Thin films deposited on Si(100) and polyethylene-terephthalate (PET) exhibit a low RMS roughness of about 0.22 nm. In addition, proof-of-principle studies on TiO2 thin films deposited on PET show promising results in terms of barrier performance with oxygen transmission rates (OTR) found to be as low as 0.12 cm3 x cm-2 x day-1 for 14 nm thin films. © The Royal Society of Chemistry 2016.

  • 2016 • 250
    Dioxygen binding to Fe-MOF-74: Microscopic insights from periodic QM/MM calculations
    Moeljadi, A.M.P. and Schmid, R. and Hirao, H.
    CANADIAN JOURNAL OF CHEMISTRY. Volume: 94 (2016)
    view abstract10.1139/cjc-2016-0284

    Accurate MOF-FF parameter sets were determined for the ferrous and ferric forms of an iron-based metal-organic framework (MOF) called Fe-MOF-74. For this purpose, density functional theory (DFT) calculations were applied to truncated cluster models of Fe-MOF-74, and the DFT-calculated geometries and energy derivatives were used for the force-field parameterization. The resultant parameter sets performed remarkably well in reproducing the experimentally determined structure of the MOF. We also performed periodic quantum mechanics (QM) / molecular mechanics (MM) calculations employing a subtractive scheme called ONIOM, with the optimized MOF-FF parameters used for the MM calculations, in an attempt to evaluate the binding energies between O2 and several Fe-MOF-74 variants. The calculated binding energy for Fe-MOF-74 agreed very well with the experimental value, and QM/MM geometry optimization calculations confirmed that the O2-bound complex has a side-on geometry. Our calculations also predicted that, when the two neighboring iron ions around the O2-binding site are replaced with other metal ions (Mg2+, Ni2+, Zn2+, Co2+, or Mn2+), there are noticeable variations in the binding energy, indicating that these substituted metal ions affect the O2 binding indirectly. © 2016 Published by NRC Research Press.

  • 2016 • 249
    Interplay of the Open Circuit Potential-Relaxation and the Dissolution Behavior of a Single H2 Bubble Generated at a Pt Microelectrode
    Karnbach, F. and Yang, X. and Mutschke, G. and Fröhlich, J. and Eckert, J. and Gebert, A. and Tschulik, K. and Eckert, K. and Uhlemann, M.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 120 (2016)
    view abstract10.1021/acs.jpcc.6b02305

    The dissolution behavior of a single H2 bubble electrochemically generated at a Pt microelectrode in 1 M H2SO4 was studied. The open circuit potential (OCP) relaxation after the polarization end was recorded and correlated with the dissolved H2 concentration at the interface electrode/electrolyte/gas. Simultaneously, the shrinking of the bubble was followed optically by means of a high speed camera. In addition, analytical modeling and numerical simulations for the bubble dissolution were performed. Three characteristic regions are identified in the OCP and the bubble radius transients: (i) slow relaxation and shrinking, (ii) transition region, and (iii) a long-term slowed down dissolution process. The high supersaturation after polarization remains longer than theoretically predicted and feeds the bubble in region (i). This reduces the dissolution rate of the bubble which differs significantly from that of nonelectrochemically produced bubbles. Numerical multispecies simulations prove that oxygen and nitrogen dissolved in the electrolyte additionally influence the bubble dissolution and slow down its shrinkage compared to pure hydrogen diffusion. In region (iii), a complete exchange of hydrogen gas with nitrogen and oxygen has occurred in the gas bubble. © 2016 American Chemical Society.

  • 2016 • 248
    A Simple Approach towards High-Performance Perovskite-Based Bifunctional Oxygen Electrocatalysts
    Elumeeva, K. and Masa, J. and Tietz, F. and Yang, F. and Xia, W. and Muhler, M. and Schuhmann, W.
    CHEMELECTROCHEM. Volume: 3 (2016)
    view abstract10.1002/celc.201500353

    To accelerate the large-scale commercialization of electrochemical energy storage and conversion technologies through water splitting and regeneration in reversible fuel cells, cost-effective, highly efficient, and durable reversible oxygen electrodes are required. We report a comparatively simple approach to modify a group of oxygen-evolving perovskites based on lanthanum cobaltite into effective bifunctional systems through partial atom substitution, which, upon intermixing with nitrogen-doped carbon nanotubes, achieve remarkably low round-trip overvoltage of <850mV in the electrocatalysis of oxygen reduction and oxygen evolution in an alkaline electrolyte, KOH (0.1m). Besides the bifunctional electrocatalytic performance, the composite systems with a low Fe content possessed promising long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2016 • 247
    FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules
    Kogelheide, F. and Kartaschew, K. and Strack, M. and Baldus, S. and Metzler-Nolte, N. and Havenith, M. and Awakowicz, P. and Stapelmann, K. and Lackmann, J.-W.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 49 (2016)
    view abstract10.1088/0022-3727/49/8/084004

    A rapid screening method for the investigation of plasma-induced chemical modifications was developed by analyzing cysteine using Fourier Transform Infrared (FTIR) spectroscopy. Cysteine is a key amino acid in proteins due to the presence of a thiol group which provides unique structural features by offering the possibility to form disulfide bonds. Its chemical composition makes cysteine a well-suited model for the investigation of plasma-induced modifications at three functional groups - the amino, the carboxyl and the thiol group - all highly abundant in proteins. FTIR spectroscopy is present in most physical laboratories and offers a fast way to assess changes in the chemical composition of cysteine substrates due to plasma treatment and to compare different treatment conditions or plasma sources with each other. Significant changes in the fingerprint spectra of cysteine samples treated with a dielectric barrier discharge (DBD) compared to untreated controls were observed using a FTIR spectrometer. The loss of the thiol signal and the simultaneous increase of bands originating from oxidized sulfur and nitrogen species indicate that the thiol group of cysteine is modified by reactive oxygen and nitrogen species during DBD treatment. Furthermore, other plasma-induced modifications, such as changes of the amino and carbonyl groups, could be observed. Complementary mass spectrometry measurements confirmed these results. © 2016 IOP Publishing Ltd.

  • 2016 • 246
    Improved photoelectrochemical performance of electrodeposited metal-doped BiVO4 on Pt-nanoparticle modified FTO surfaces
    Gutkowski, R. and Peeters, D. and Schuhmann, W.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 4 (2016)
    view abstract10.1039/c6ta01340f

    The recombination of photogenerated electron-hole pairs is one of the main limiting factors of photoelectrocatalysts absorbing in the visible part of the solar spectrum. Especially for BiVO4 the slow electron transport to the back contact facilitates charge recombination. Hence, thin layers have to be used to obtain higher photocurrents which are concomitantly only allow low absorption of the incident light. To address this limitation we have modified FTO substrates with Pt-nanoparticles before electrodepositing BiVO4. The Pt-nanoparticles decrease the overpotential for the electrodeposition of BiVO4, but more importantly they provide the basis for decreased charge recombination. Electrodeposited Mo-doped BiVO4 on Pt-nanoparticle modified FTO exhibits a substantially decreased recombination of photogenerated charge carriers during frontside illumination. Simultaneous co-doping of BiVO4 with two different metals leads to a substantial enhancement of the incident-photon-to-current efficiency (IPCE) during light driven oxygen evolution reaction. Highest IPCE (>30% at 1.2 V vs. RHE) values were obtained for Mo/Zn- and Mo/B-doped BiVO4. © 2016 The Royal Society of Chemistry.

  • 2016 • 245
    Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis
    Eßmann, V. and Barwe, S. and Masa, J. and Schuhmann, W.
    ANALYTICAL CHEMISTRY. Volume: 88 (2016)
    view abstract10.1021/acs.analchem.6b02393

    Electrochemical efficiency and stability are among the most important characteristics of electrocatalysts. These parameters are usually evaluated separately for the anodic and cathodic half-cell reactions in a three-electrode system or by measuring the overall cell voltage between the anode and cathode as a function of current or time. Here, we demonstrate how bipolar electrochemistry can be exploited to evaluate the efficiency of electrocatalysts for full electrochemical water splitting while simultaneously and independently monitoring the individual performance and stability of the half-cell electrocatalysts. Using a closed bipolar electrochemistry setup, all important parameters such as overvoltage, half-cell potential, and catalyst stability can be derived from a single galvanostatic experiment. In the proposed experiment, none of the half-reactions is limiting on the other, making it possible to precisely monitor the contribution of the individual half-cell reactions on the durability of the cell performance. The proposed approach was successfully employed to investigate the long-term performance of a bifunctional water splitting catalyst, specifically amorphous cobalt boride (Co2B), and the durability of the electrocatalyst at the anode and cathode during water electrolysis. Additionally, by periodically alternating the polarization applied to the bipolar electrode (BE) modified with a bifunctional oxygen electrocatalyst, it was possible to explicitly follow the contributions of the oxygen reduction (ORR) and the oxygen evolution (OER) half-reactions on the overall long-term durability of the bifunctional OER/ORR electrocatalyst. © 2016 American Chemical Society.

  • 2016 • 244
    Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers
    Pinyou, P. and Ruff, A. and Pöller, S. and Alsaoub, S. and Leimkühler, S. and Wollenberger, U. and Schuhmann, W.
    BIOELECTROCHEMISTRY. Volume: 109 (2016)
    view abstract10.1016/j.bioelechem.2015.12.005

    Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells. © 2015 Elsevier B.V.

  • 2016 • 243
    On the role of the stability of functional groups in multi-walled carbon nanotubes applied as support in iron-based high-temperature Fischer-Tropsch synthesis
    Chew, L.M. and Xia, W. and Düdder, H. and Weide, P. and Ruland, H. and Muhler, M.
    CATALYSIS TODAY. Volume: 270 (2016)
    view abstract10.1016/j.cattod.2015.09.023

    The role of the stability of surface functional groups in oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (CNTs) applied as support for iron catalysts in high-temperature Fischer-Tropsch synthesis was studied in a fixed-bed U-tube reactor at 340°C and 25 bar with a H2:CO ratio of 1. Iron oxide nanoparticles supported on untreated oxygen-functionalized CNTs (OCNTs) and nitrogen-functionalized CNTs (NCNTs) as well as thermally treated OCNTs were synthesized by the dry impregnation method using ammonium ferric citrate as iron precursor. The properties of all catalysts were examined using X-ray diffraction, temperature-programmed reduction in H2, X-ray photoelectron spectroscopy and temperature-programmed oxidation in O2. The activity loss for iron nanoparticles supported on untreated OCNTs was found to originate from severe sintering and carbon encapsulation of the iron carbide nanoparticles under reaction conditions. Conversely, the sintering of the iron carbide nanoparticles on thermally treated OCNTs and untreated NCNTs during reaction was far less pronounced. The presence of more stable surface functional groups in both thermally treated OCNTs and untreated NCNTs is assumed to be responsible for the less severe sintering of the iron carbide nanoparticles during reaction. As a result, no activity loss for iron nanoparticles supported on thermally treated OCNTs and untreated NCNTs was observed, which even became gradually more active under reaction conditions. © 2015 Published by Elsevier B.V.

  • 2016 • 242
    Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability
    Cherevko, S. and Geiger, S. and Kasian, O. and Kulyk, N. and Grote, J.-P. and Savan, A. and Shrestha, B.R. and Merzlikin, S. and Breitbach, B. and Ludwig, Al. and Mayrhofer, K.J.J.
    CATALYSIS TODAY. Volume: 262 (2016)
    view abstract10.1016/j.cattod.2015.08.014

    Metallic iridium and ruthenium as well as their oxides are among the most active oxygen evolution (OER) electrocatalysts in acidic media, and are also of interest for the catalysis of the hydrogen evolution (HER). The stability of these materials under different operating conditions is, however, still not fully understood. In the current work, activity and stability of well-defined Ru, RuO2, Ir, and IrO2 thin film electrodes are evaluated in acidic and alkaline electrolytes using an electrochemical scanning flow cell (SFC) connected to an inductively coupled plasma mass spectrometer (ICP-MS). Identical experimental protocols are intentionally employed for all electrodes and electrolytes, to obtain unambiguous and comparable information on intrinsic activity and stability of the electrodes. It is found that independent of the electrolyte, OER activity decreases as Ru > Ir ≈ RuO2 > IrO2, while dissolution increases as IrO2 « RuO2 < Ir « Ru. Moreover, dissolution of these metals in both solutions is 2-3 orders of magnitude higher compared to their respective oxides, and dissolution is generally more intense in alkaline solutions. Similarly to the OER, metallic electrodes are more active catalysts for HER. They, however, suffer from dissolution during native oxide reduction, while IrO2 and RuO2 do not exhibit significant dissolution. The obtained results on activity and stability of the electrodes are discussed in light of their potential applications, i.e. water electrolysers or fuel cells. © 2015 Elsevier B.V.

  • 2016 • 241
    Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes
    Elumeeva, K. and Masa, J. and Sierau, J. and Tietz, F. and Muhler, M. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 208 (2016)
    view abstract10.1016/j.electacta.2016.05.010

    Due to the high cost of precious metal-based electrocatalysts for oxygen reduction and oxygen evolution, the development of alternative low cost and efficient catalysts is of high importance for energy storage and conversion technologies. Although non-precious catalysts that can efficiently catalyze oxygen reduction and oxygen evolution have been developed, electrocatalysts with high bifunctional activity for both oxygen evolution and reduction are needed. Perovskites based on modified lanthanum cobaltite possess significant activity for the oxygen evolution reaction. We describe the synthesis of a bifunctional oxygen electrode with simultaneous activity for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media by direct growth of nitrogen-doped carbon nanotubes on the surface of a perovskite containing Co and Fe by means of chemical vapor deposition. The difference in the overvoltage between ORR (at 1 mA/cm2) and OER (at 10 mA/cm2) was below 880 mV in 0.1 M KOH. The formation of H2O2 during the ORR was reduced by at least three fold when using the bifunctional catalyst as compared to the non-modified perovskite. Long-term durability tests indicate stable performance for at least 37 h during the OER and 23 h during the ORR. © 2016 Elsevier Ltd. All rights reserved.

  • 2016 • 240
    A review on lithium combustion
    Schiemann, M. and Bergthorson, J. and Fischer, P. and Scherer, V. and Taroata, D. and Schmid, G.
    APPLIED ENERGY. Volume: 162 (2016)
    view abstract10.1016/j.apenergy.2015.10.172

    Lithium combustion has been studied for several decades, with a primary focus on safety issues, such as lithium fires resulting from spills in nuclear reactors. Several studies have also considered the use of lithium as a fuel within propellants, or within propulsion systems that burn lithium in the atmospheric "air" of other planets. Lithium safety has typically been investigated through combustion of molten pieces of lithium or within pool fires. For propulsion applications, experiments were carried out using packed beds of lithium particles.A novel approach that has recently been proposed is the use of lithium as a recyclable fuel, or energy carrier that can compactly store renewable energy. In this scheme, lithium is burned with air, or power-plant exhaust, to generate heat for thermal power systems when power is needed. The solid-phase combustion products would be collected and recycled, via electrolysis, back into elemental lithium when excess renewable power is available.This paper summarizes the existing knowledge on lithium combustion. It presents the available findings on lithium combustion for large single pieces of lithium, on pool fires, reaction in packed beds, as well as the combustion of sub-mm sized particles and droplets which are needed for the use of lithium as an energy carrier. The combustion reactions of lithium with O2, H2O, CO2 and N2 are discussed. Modelling of lithium-particle combustion is at the early stages of development and available results are discussed. © 2015.

  • 2016 • 239
    Physisorption versus chemisorption of oxygen molecules on Ag(100)
    Mehlhorn, M. and Morgenstern, K.
    JOURNAL OF CHEMICAL PHYSICS. Volume: 144 (2016)
    view abstract10.1063/1.4945339

    We compare the adsorption of oxygen molecules on Ag(100) at 60 K and at 100 K. At both temperatures, the molecules form islands. Differences between the species adsorbed at the two temperatures in both low-temperature scanning tunneling microscopy and inelastic electron tunneling spectroscopy are attributed to two different adsorption states, a chemisorbed state after 100 K adsorption and a physisorbed state after 60 K adsorption. © 2016 AIP Publishing LLC.

  • 2016 • 238
    Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction - A comparative study between SECM and hydrodynamic methods
    Dobrzeniecka, A. and Zeradjanin, A.R. and Masa, J. and Blicharska, M. and Wintrich, D. and Kulesza, P.J. and Schuhmann, W.
    CATALYSIS TODAY. Volume: 262 (2016)
    view abstract10.1016/j.cattod.2015.07.043

    An advanced approach based on scanning electrochemical microscopy (SECM) was used to investigate the kinetics of the oxygen reduction reaction (ORR) on multiwalled carbon nanotubes (MWCNTs) and a composite of MWCNTs and cobalt (IX) protoporphyrin (MWCNTs/CoP). The amount of hydrogen peroxide produced during ORR was studied as a function of catalyst loading in an electrolyte of pH 7. Additionally, a Pt ultra microelectrode (UME) was used to determine changes in interfacial oxygen concentration from which intrinsic rate constants of heterogeneous electron transfer during the ORR were calculated. The amount of hydrogen peroxide produced and the number of electrons exchanged during oxygen reduction, and the heterogeneous electron transfer rate constants determined using SECM were compared with the corresponding values obtained using methods based on forced convection, namely RRDE and RDE. It was found that SECM offers some advantages compared to RDE or RRDE with regard to accuracy in determining the number of electrons transferred during the ORR, particularly in the case of thick and porous catalyst films. However, the heterogeneous electron transfer rate constants were similar for both methods, indicating that the determination of the surface concentration of reactants using RC-SECM suffers from some drawbacks. © 2015 Elsevier B.V.

  • 2016 • 237
    Application of scanning electrochemical microscopy (SECM) to study electrocatalysis of oxygen reduction by MN4-macrocyclic complexes
    Masa, J. and Ventosa, E. and Schuhmann, W.
    ELECTROCHEMISTRY OF N4 MACROCYCLIC METAL COMPLEXES: VOLUME 1: ENERGY, SECOND EDITION. Volume: (2016)
    view abstract10.1007/978-3-319-31172-2_4

    N4-macrocyclic complexes are among the most widely investigated molecular materials for the oxygen reduction reaction (ORR). These complexes are attractive because they inherently provide well-defined structural models for describing the ORR not only in nature, for example, in cytochrome c oxidases, but also for electrocatalysts of industrial importance. The development of more efficient N4-macrocyclic complexes as electrocatalysts for the ORR requires in-depth understanding of the most crucial properties that govern their functionality. This goal necessitates employing advanced techniques and methods to accurately probe electrocatalytic behavior. This chapter covers a brief introduction of scanning electrochemical microscopy (SECM) and discusses its application for evaluation of the electrocatalytic behavior of materials, with particular focus on the ORR. A general overview of the benefits of using SECM as an alternative or as a complimentary technique to rotating-ring disk electrode (RRDE) voltammetry in studying the kinetics of the ORR is provided, with examples of this application dedicated to catalysts derived from MN4-macrocyclic complexes. The chapter also covers examples of the application of SECM as a semi-combinatorial and high-throughput tool for catalyst screening and development, and the evaluation of electrocatalysts at temperatures of industrial relevance. Discussion of some recent developments of the application of SECM, or SECM coupled to other auxiliary techniques, in electrocatalysis, for example, in probing electrolysis of individual nanoparticles, and a forecast of its potential future applications in both fundamental and applied science are included at the end of this chapter. © Springer International Publishing Switzerland 2016.

  • 2016 • 236
    Energetic and economic evaluation of membrane-based carbon capture routes for power plant processes
    Maas, P. and Nauels, N. and Zhao, L. and Markewitz, P. and Scherer, V. and Modigell, M. and Stolten, D. and Hake, J.-F.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL. Volume: 44 (2016)
    view abstract10.1016/j.ijggc.2015.11.018

    The application of CCS technology involves considerable efficiency losses and significant additional investments. The aim is therefore to reduce these efficiency losses and to cut costs. Against this background, membrane-based carbon capture routes for the post-combustion, oxyfuel and pre-combustion technology lines will be analyzed in the following for hard-coal-fired power plants. To the best knowledge of the authors, this paper is the first one comparing membrane based capture routes on common technical and economic boundary conditions. The post-combustion process involves a cascade arrangement of polymer membranes. In the optimum case, the efficiency losses for this concept amount to 9.6 percentage points. In comparison, efficiency losses for the other two membrane-based concepts, i.e. oxyfuel (oxygen transport membrane (OTM) with vacuum pump) and pre-combustion (water-gas shift reactor-WGSMR), are considerably lower (5.3/5.5 percentage points). The main goal of this paper is to assess levelized cost of electricity (LCOE) for the process routes under consideration and their sensitivity on CO2 allowance costs, yearly operating hours, membrane costs and membrane lifetime. The specific investment costs for the capture plants are 2410€/kWh (oxyfuel), 2572€/kWh (post-combustion) and 2660€/kWh (pre-combustion). This is 66% (post-combustion), 55% (oxyfuel) and 33% (pre-combustion) above the specific investment costs for the corresponding reference case without carbon capture. Allowance prices in a range from €20 (pre-combustion) to €39 (post-combustion) per tonne of CO2 would be necessary to compensate for the additional investments. Since it can be assumed that the membranes have a limited lifetime, the influence on electricity generation costs was calculated for different lifetimes. The results show that a technical service life of more than 3 years does not have a significant impact on generation costs. This applies to all the technological concepts investigated. In terms of LCOE and CO2 avoidance costs (€/tCO2) it turns out that oxyfuel and pre-combustion based membrane power plants are favorable compared to the post-combustion route. However, it has to be kept in mind that the uncertainty in membrane costs are higher for the oxyfuel membranes (ceramic oxygen transport membranes) and the pre-combustion membranes (microporous ceramic membranes) compared to the polymeric post-combustion membranes which already have achieved a commercial level. © 2015.

  • 2016 • 235
    Controlling the stress state of La1-xSrxCoyFe1-yO3-δ oxygen transport membranes on porous metallic supports deposited by plasma spray-physical vapor process
    Marcano, D. and Mauer, G. and Sohn, Y.J. and Vaßen, R. and Garcia-Fayos, J. and Serra, J.M.
    JOURNAL OF MEMBRANE SCIENCE. Volume: 503 (2016)
    view abstract10.1016/j.memsci.2015.12.029

    La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF), deposited on a metallic porous support by plasma spray-physical vapor deposition (PS-PVD) is a promising candidate for oxygen-permeation membranes. However, after O2 permeation tests, membranes show vertical cracks leading to leakage during the tests. In the present work, one important feature leading to crack formation was identified. More specifically; membrane residual stress changes during thermal loading were found to be related to a phase transformation in the support. In order to improve the performance of the membranes, the metallic support was optimized by applying an appropriate heat treatment. The observed oxygen fluxes during permeation tests had infinite selectivity and were amongst the highest fluxes ever measured for LSCF membranes in the thickness range of 30μm, supported by LSCF porous substrates. © 2016 Elsevier B.V.

  • 2016 • 234
    Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution
    Masa, J. and Weide, P. and Peeters, D. and Sinev, I. and Xia, W. and Sun, Z. Y. and Somsen, C. and Muhler, M. and Schuhmann, W.
    ADVANCED ENERGY MATERIALS. Volume: 6 (2016)
    view abstract10.1002/aenm.201502313

    It is demonstrated that amorphous cobalt boride (Co2B) prepared by the chemical reduction of CoCl2 using NaBH4 is an exceptionally efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline electrolytes and is simultaneously active for catalyzing the hydrogen evolution reaction (HER). The catalyst achieves a current density of 10 mA cm(-2) at 1.61 V on an inert support and at 1.59 V when impregnated with nitrogen-doped graphene. Stable performance is maintained at 10 mA cm(-2) for at least 60 h. The optimized catalyst, Co2B annealed at 500 degrees C (Co2B-500) evolves oxygen more efficiently than RuO2 and IrO2, and its performance matches the best cobalt-based catalysts reported to date. Co2B is irreversibly oxidized at OER conditions to form a CoOOH surface layer. The active form of the catalyst is therefore represented as CoOOH/Co2B. EXAFS observations indicate that boron induces lattice strain in the crystal structure of the metal, which potentially diminishes the thermodynamic and kinetic barrier of the hydroxylation reaction, formation of the OOH* intermediate, a key limiting step in the OER.

  • 2016 • 233
    On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides
    Kasian, O. and Geiger, S. and Stock, P. and Polymeros, G. and Breitbach, B. and Savan, A. and Ludwig, Al. and Cherevko, S. and Mayrhofer, K.J.J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY. Volume: 163 (2016)
    view abstract10.1149/2.0131611jes

    High oxygen evolution reaction activity of ruthenium and long term stability of iridium in acidic electrolytes make their mixed oxides attractive candidates for utilization as anodes in water electrolyzers. Indeed, such materials were addressed in numerous previous studies. The application of a scanning flow cell connected to an inductively coupled plasma mass spectrometer allowed us now to examine the stability and activity toward oxygen evolution reaction of such mixed oxides in parallel. The whole composition range of Ir-Ru mixtures has been covered in a thin film material library. In the whole composition range the rate of Ru dissolution is observed to be much higher than that of Ir. Eventually, due to the loss of Ru, the activity of the mixed oxides approaches the value corresponding to pure IrO2. Interestingly, the loss of only a few percent of a monolayer in Ru surface concentration results in a significant drop in activity. Several explanations of this phenomenon are discussed. It is concluded that the herein observed stability of mixed Ir-Ru oxide systems is most likely a result of high corrosion resistance of the iridium component, but not due to an alteration of the material's electronic structure. © 2016 by the Authors.

  • 2016 • 232
    Analysis of Electronic and Structural Properties of Surfaces and Interfaces Based on LaAlO 3 and SrTiO 3
    Piyanzina, I.I. and Lysogorskiy, Y.V. and Varlamova, I.I. and Kiiamov, A.G. and Kopp, T. and Eyert, V. and Nedopekin, O.V. and Tayurskii, D.A.
    JOURNAL OF LOW TEMPERATURE PHYSICS. Volume: 185 (2016)
    view abstract10.1007/s10909-016-1483-2

    Recently, it was established that a two-dimensional electron system can arise at the interface between two oxide insulators LaAlO3 and SrTiO3. This paradigmatic example exhibits metallic behaviors and magnetic properties between non-magnetic and insulating oxides. Despite a huge amount of theoretical and experimental work a thorough understanding is yet to be achieved. We analyzed the structural deformations of a LaAlO3 (001) slab induced by hydrogen adatoms and oxygen vacancies at its surface by means of density functional theory. Moreover, we investigated the influence of surface reconstruction on the density of states and determined the change of the local density of states at the Fermi level with increasing distance from the surface for bare LaAlO3 and for a conducting LaAlO3/SrTiO3 interface. In addition, the Al-atom displacements and distortions of the TiO6-octahedra were estimated. © 2016, Springer Science+Business Media New York.

  • 2016 • 231
    Effects of CO2 on submicronic carbon particulate (soot) formed during coal pyrolysis in a drop tube reactor
    Senneca, O. and Apicella, B. and Heuer, S. and Schiemann, M. and Scherer, V. and Stanzione, F. and Ciajolo, A. and Russo, C.
    COMBUSTION AND FLAME. Volume: 172 (2016)
    view abstract10.1016/j.combustflame.2016.07.023

    In oxycombustion and gasification processes coal pyrolysis occurs in CO2-rich atmospheres. The present work investigates the effect of such conditions on the quantity and quality of the submicronic carbon particulate produced. Pyrolysis experiments were carried out in either N2 or CO2 atmospheres in a laminar drop tube reactor, with wall temperatures of 1573 K, heating rates of 104–105 K/s and residence times below 130 ms, so as to reproduce pyrolysis conditions comparable to those of pulverized coal-fired boilers. The carbon particulate sampled in the reactor was found to have bimodal distribution in the micronic and submicronic ranges. A method based on solvent extraction was applied to carbon particulate for separating the two modes and determining the relative mass contribution of micronic and submicronic fractions. In CO2 atmosphere the amount of submicronic fraction of carbon particulate, referred to as soot, was found to be up to four times as much as upon N2 experiments. Beside the larger formation of soot, relevant differences in terms of combustion reactivity, size distribution and chemical structure of the residual carbon particulate produced in CO2 environment in respect to N2 environment were observed by means of a large array of techniques including thermogravimetry, microscopy (SEM+EDX), FT-IR, UV–visible and Raman spectroscopy along with XRD and XPS techniques. © 2016 The Combustion Institute

  • 2016 • 230
    Atomic-layer-controlled deposition of TEMAZ/O2-ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells
    Keuter, T. and Mauer, G. and Vondahlen, F. and Iskandar, R. and Menzler, N.H. and Vaßen, R.
    SURFACE AND COATINGS TECHNOLOGY. Volume: 288 (2016)
    view abstract10.1016/j.surfcoat.2016.01.026

    Solid oxide fuel cells (SOFCs) directly convert the chemical energy of fuels into electrical energy with high efficiency. Under certain conditions oxygen can diffuse to the Ni/8 mol% Y2O3-doped ZrO2 substrate of anode-supported SOFCs, then the nickel re-oxidizes, leading to cracks in the electrolyte and cell failure thus limiting the durability of SOFCs. In order to improve the stability of SOFCs with respect to oxidation, the inner surface of the porous substrate is coated with a ZrO2 oxidation resistance layer using atomic layer deposition (ALD) with the precursors tetrakis(ethylmethylamino)zirconium (TEMAZ) and molecular oxygen. This TEMAZ/O2-ZrO2 ALD process has not yet been reported in the literature and hence, the development of the process is described in this paper. The inner surface of the porous substrate is coated with ZrO2 and the film thickness is compared with theoretical predictions, verifying the ALD model. Furthermore, the coating depth can be estimated using a simple analytical equation. The ALD ZrO2 film protects the nickel in the substrate against oxidation for at least 17 re-oxidation/re-reduction cycles. The ZrO2 inner surface coating is a highly promising candidate for enhancing the resistance of SOFCs to re-oxidation because of the excellent oxidation resistance and good cycling stability of the film. © 2016 Elsevier B.V.

  • 2016 • 229
    Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents
    Khazaee, M. and Xia, W. and Lackner, G. and Mendes, R.G. and Rummeli, M. and Muhler, M. and Lupascu, D.C.
    SCIENTIFIC REPORTS. Volume: 6 (2016)
    view abstract10.1038/srep26208

    The synthesis and characterization of gas phase oxygen-and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices.

  • 2016 • 228
    Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
    Mistry, H. and Varela, A.S. and Bonifacio, C.S. and Zegkinoglou, I. and Sinev, I. and Choi, Y.-W. and Kisslinger, K. and Stach, E.A. and Yang, J.C. and Strasser, P. and Cuenya, B.R.
    NATURE COMMUNICATIONS. Volume: 7 (2016)
    view abstract10.1038/ncomms12123

    There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides are surprisingly resistant to reduction and copper+ species remain on the surface during the reaction. Our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper+ is key for lowering the onset potential and enhancing ethylene selectivity.

  • 2016 • 227
    The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1−xSrxCoyFe1−yO3−δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition
    Marcano, D. and Mauer, G. and Sohn, Y.J. and Vaßen, R. and Garcia-Fayos, J. and Serra, J.M.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 25 (2016)
    view abstract10.1007/s11666-016-0383-y

    La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases. © 2016, ASM International.

  • 2016 • 226
    The impact of carbon and oxygen in alpha-titanium: Ab initio study of solution enthalpies and grain boundary segregation
    Aksyonov, D.A. and Hickel, T. and Neugebauer, J. and Lipnitskii, A.G.
    JOURNAL OF PHYSICS CONDENSED MATTER. Volume: 28 (2016)
    view abstract10.1088/0953-8984/28/38/385001

    The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions. © 2016 IOP Publishing Ltd.

  • 2016 • 225
    A Three-Electrode, Battery-Type Swagelok Cell for the Evaluation of Secondary Alkaline Batteries: The Case of the Ni-Zn Battery
    Garcia, G. and Schuhmann, W. and Ventosa, E.
    CHEMELECTROCHEM. Volume: 3 (2016)
    view abstract10.1002/celc.201500474

    Three-electrode cells are essential in understanding battery materials under operando conditions. A three-electrode, battery-type Swagelok cell for electrochemical studies of secondary alkaline batteries, in particular Ni-Zn batteries, is presented. The relevance of the three-electrode battery-type cell (i.e. sealed and non-flooded) configuration is demonstrated as analytical tool with three observations: 1)The Ni electrode is shown to limit the system in the first cycles, while the Zn electrode becomes limiting in subsequent cycles. 2)Non-woven separators (NWSs) clearly improve the performance of the battery. Besides the known fact of hindering the dendritic growth of Zn, NWSs inhibit the evolution of oxygen and hydrogen at the positive and negative electrodes. 3)The kinetics of the Ni electrode is much slower than that of the Zn electrode, as derived from the charge-transfer resistance of the Ni electrode, which is substantially larger than that of the Zn electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2016 • 224
    Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode
    Aijaz, A. and Masa, J. and Rösler, C. and Xia, W. and Weide, P. and Botz, A.J.R. and Fischer, R.A. and Schuhmann, W. and Muhler, M.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 55 (2016)
    view abstract10.1002/anie.201509382

    Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal-air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core-shell Co@Co3O4 nanoparticles embedded in CNT-grafted N-doped carbon-polyhedra obtained by the pyrolysis of cobalt metal-organic framework (ZIF-67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2, and RuO2 and thus ranking them among one of the best non-precious-metal electrocatalysts for reversible oxygen electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2016 • 223
    Revising secondary electron yields of ion-sputtered metal oxides
    Corbella, C. and Marcak, A. and de los Arcos, T. and von Keudell, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS. Volume: 49 (2016)
    view abstract10.1088/0022-3727/49/16/16LT01

    The emission of secondary electrons (SE) during sputtering of Al and Ti foils by argon ions in an oxygen background has been measured in a particle beam reactor equipped with a SE-collector. This experiment mimics the process of reactive magnetron sputtering. Quantified beams of argon ions with energies between 500 eV and 2000 eV were employed, while simultaneously molecular oxygen fluxes impinged on the surface and caused oxidation. The measured secondary electron emission coefficients (gamma) ranged from approximately 0.1 (for clean aluminium and titanium) to 1.2 and 0.6 (in the case of aluminium oxide and titanium oxide, respectively). The increase of gamma is compared to SE measurements based on the modelling of magnetron plasmas. Moreover, the energy distributions of the emitted SE have been measured by varying the retarding potential of the SE-collector, which allows the monitoring of the oxidation state from the position of the Auger peaks. The origin of the observed SE yields based on the emission of low-and high-energy electrons generated on the oxide surface is discussed.

  • 2016 • 222
    Electrocatalysis and bioelectrocatalysis – Distinction without a difference
    Masa, J. and Schuhmann, W.
    NANO ENERGY. Volume: 29 (2016)
    view abstract10.1016/j.nanoen.2016.04.007

    Nature's subtle systems drive essential reactions responsible for sustenance of our existence “reactions of life” through sophisticated mechanisms of charge transfer, energy harvest and conversion. The interconnectedness between living nature and technologically relevant electrochemical reactions, for example, oxygen reduction and evolution catalyzed by cytochrome c oxidases and photosystem II respectively, and hydrogen oxidation and evolution catalyzed by hydrogenases, does not only intrigue but also inspires us. To what extent therefore can our present understanding of electrocatalysis guide us to decipher nature's sophistication, or rather, can bioinspired electrocatalysis succeed to replicate and supersede nature's perfection “the exemplar paragon”? Herein, we present a harmonized perspective of the principle factors which govern electrocatalysis and bioelectrocatalysis featuring examples of technologically important electrochemical reactions catalyzed by both enzymes and inorganic electrocatalysts. Sound knowledge of the inter-relationships linking electrocatalysis and bioelectrocatalysis is essential for enabling a deeper understanding of nature's bioelectrochemical reactions, and for insightful design of functional catalysts inspired by models from living nature. © 2016 Elsevier Ltd

  • 2016 • 221
    Cr2O3 Nanoparticles on Ba5Ta4O15 as a Noble-Metal-Free Oxygen Evolution Co-Catalyst for Photocatalytic Overall Water Splitting
    Soldat, J. and Busser, G.W. and Muhler, M. and Wark, M.
    CHEMCATCHEM. Volume: 8 (2016)
    view abstract10.1002/cctc.201500977

    The (1 1 1)-layered perovskite material Ba5Ta4O15 represents a suitable photoabsorber with remarkable photocatalytic activity in overall water splitting. We are the first to demonstrate overall water splitting without the presence of a noble-metal-based co-catalyst over this catalyst. The photocatalytic activity of Ba5Ta4O15 was investigated by overall water splitting after reductive photodeposition of amorphous Cr2O3. The formation of Cr2O3 nanoparticles for water splitting was evidenced by X-ray photoelectron spectroscopy and transmission electron microscopy. The reductive photodeposition of very low amounts of Cr2O3 on Ba5Ta4O15 induces stable rates in overall water splitting up to 465 μmol h-1 H2 and 228 μmol h-1 O2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2016 • 220
    Surface Structure and Photocatalytic Properties of Bi2WO6 Nanoplatelets Modified by Molybdena Islands from Chemical Vapor Deposition
    Dittmer, A. and Menze, J. and Mei, B. and Strunk, J. and Luftman, H.S. and Gutkowski, R. and Wachs, I.E. and Schuhmann, W. and Muhler, M.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 120 (2016)
    view abstract10.1021/acs.jpcc.6b07007

    We report on a novel route of preparing molybdena-modified bismuth tungstates and their successful application in the photocatalytic oxygen evolution reaction and the oxidation of glycerol. Hierarchically assembled monocrystalline Bi2WO6 nanoplatelets with a specific surface area of 10 m2/g were obtained applying a hydrothermal synthesis method using Na2WO4 and Bi(NO3)3 as precursors, followed by a solvent-free chemical vapor deposition method using Mo(CO)6, resulting in highly dispersed molybdena species. Extensive characterization using X-ray photoelectron spectroscopy, low-energy ion scattering, and Raman spectroscopy showed that microcrystalline MoO3 islands were formed on the bismuth tungstate surface that grew in height and lateral dimension with increasing loading. Correspondingly, the molybdena-modified materials were found to have favorable photocatalytic and photoelectrochemical properties in the oxygen evolution reaction and the selective oxidation of glycerol. © 2016 American Chemical Society.

  • 2016 • 219
    Benchmarking the Performance of Thin-Film Oxide Electrocatalysts for Gas Evolution Reactions at High Current Densities
    Ganassin, A. and Maljusch, A. and Colic, V. and Spanier, L. and Brandl, K. and Schuhmann, W. and Bandarenka, A.
    ACS CATALYSIS. Volume: 6 (2016)
    view abstract10.1021/acscatal.6b00455

    Oxide materials are among the state-of-the-art heterogeneous electrocatalysts for many important large-scale industrial processes, including O2 and Cl2 evolution reactions. However, benchmarking their performance is challenging in many cases, especially at high current densities, which are relevant for industrial applications. Serious complications arise particularly due to (i) the formation of a nonconducting gas phase which blocks the surface during the reactions, (ii) problems in determination of the real electroactive electrode area, and (iii) the large influence of surface morphology alterations (stability issues) under reaction conditions, among others. In this work, an approach overcoming many of these challenges is presented, with a focus on electrochemically formed thin-film oxide electrocatalysts. The approach is based on benefits provided by the use of microelectrodes, and it gives comprehensive information about the surface roughness, catalyst activity, and stability. The key advantages of the proposed method are the possibility of characterization of the whole microelectrode surface by means of atomic force microscopy and an accurate assessment of the specific activity (and subsequently stability) of the catalyst, even at very high current densities. Electrochemically deposited CoOx thin films have been used in this study as model catalysts. © 2016 American Chemical Society.

  • 2016 • 218
    Characterisation of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM
    Chen, X. and Botz, A.J.R. and Masa, J. and Schuhmann, W.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY. Volume: 20 (2016)
    view abstract10.1007/s10008-015-3028-z

    Electrocatalysts that can reversibly reduce oxygen and oxidise water are of prime importance for the advancement of new emerging electrochemical energy storage and conversion systems. We present in this work the application of scanning electrochemical microscopy (SECM) for characterisation of bifunctional catalysts. By using model bifunctional catalysts based on oxides of cobalt (CoxOy) and nickel (NixOy) embedded in nitrogen-doped carbon (NC), we specifically show the unique ability of using SECM to determine a range of the important electrocatalytic parameters including the selectivity of the oxygen reduction reaction (ORR), the initial mechanistic steps during the oxygen evolution reaction (OER), and the onset potential for both ORR and OER in a single experiment. We were able to observe directly that prior to oxygen evolution, local depletion of oxygen occurs at the SECM tip during redox transition accompanying most likely metal oxyhydroxide formation thus enabling direct in situ observation of the initial mechanistic steps of the OER. © 2015, Springer-Verlag Berlin Heidelberg.

  • 2016 • 217
    Structure-Activity-Stability Relationships for Space-Confined PtxNiy Nanoparticles in the Oxygen Reduction Reaction
    Mezzavilla, S. and Baldizzone, C. and Swertz, A.-C. and Hodnik, N. and Pizzutilo, E. and Polymeros, G. and Keeley, G.P. and Knossalla, J. and Heggen, M. and Mayrhofer, K.J.J. and Schüth, F.
    ACS CATALYSIS. Volume: 6 (2016)
    view abstract10.1021/acscatal.6b02221

    This study focuses on the synthesis and electrochemical performance (i.e, activity and stability) of advanced electrocatalysts for the oxygen reduction reaction (ORR), made of Pt-Ni nanoparticles embedded in hollow graphitic spheres (HGS). The mechanism of the confined space alloying, that is, the controlled alloying of bimetallic precursors with different compositions (i.e., Pt3Ni, PtNi, and PtNi3) within the HGS mesoporous shell, was examined in detail. It was found that the presence of platinum during the reduction step, as well as the application of high annealing temperatures (at least 850°C for 3.5h in Ar), are necessary conditions to achieve the complete encapsulation and the full stability of the catalysts. The evolution of the activity, the electrochemical surface area, and the residual alloy composition of the Pt-Ni@HGS catalysts was thoroughly monitored (at the macro- and nanoscale level) under different degradation conditions. After the initial activation, the embedded Pt-Ni nanoparticles (3-4 nm in size) yield mass activities that are 2- to 3.5-fold higher than that of pure Pt@HGS (depending on the alloy composition). Most importantly, it is demonstrated that under the normal operation range of an ORR catalyst in PEM-FCs (potential excursions between 0.4 and 1.0 VRHE) both the nanoparticle-related degradation pathways (particle agglomeration) and dealloying phenomena are effectively suppressed, irrespectively of the alloy composition. Thus, the initial enhanced activity is completely maintained over an extended degradation protocol. In addition, owing to the peculiar configuration of the catalysts consisting of space-confined nanoparticles, it was possible to elucidate the impact of the dealloying process (as a function of alloy composition and severity of the degradation protocols) separately from other parallel phenomena, providing valuable insight into this elusive degradation mechanism. (Graph Presented). © 2016 American Chemical Society.

  • 2016 • 216
    Nitrogen-Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics
    Wang, G.-H. and Cao, Z. and Gu, D. and Pfänder, N. and Swertz, A.-C. and Spliethoff, B. and Bongard, H.-J. and Weidenthaler, C. and Schmidt, W. and Rinaldi, R. and Schüth, F.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 55 (2016)
    view abstract10.1002/anie.201511558

    Hydrodeoxygenation (HDO) is an attractive route for the upgrading of bio-oils produced from lignocellulose. Current catalysts require harsh conditions to effect HDO, decreasing the process efficiency in terms of energy and carbon balance. Herein we report a novel and facile method for synthesizing bimetallic PtCo nanoparticle catalysts (ca. 1.5 nm) highly dispersed in the framework of nitrogen-doped ordered mesoporous carbon (NOMC) for this reaction. We demonstrate that NOMC with either 2D hexagonal (p6m) or 3D cubic (Im3m) structure can be easily synthesized by simply adjusting the polymerization temperature. We also demonstrate that PtCo/NOMC (metal loading: Pt 9.90 wt %; Co 3.31 wt %) is a highly effective catalyst for HDO of phenolic compounds and “real-world” biomass-derived phenolic streams. In the presence of PtCo/NOMC, full deoxygenation of phenolic compounds and a biomass-derived phenolic stream is achieved under conditions of low severity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2016 • 215
    Nitrogen-Doped Hollow Amorphous Carbon Spheres@Graphitic Shells Derived from Pitch: New Structure Leads to Robust Lithium Storage
    Ma, Q. and Wang, L. and Xia, W. and Jia, D. and Zhao, Z.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 22 (2016)
    view abstract10.1002/chem.201503462

    Nitrogen-doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen-containing groups on NHCS, and the resulting NHCS-O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium-ion batteries. The NHCS-O electrode maintained a reversible specific capacity of 616 mAh g-1 after 250 cycles at a current rate of 500 mA g-1, which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS-O electrode exhibited a reversible capacity of 503 mAh g-1 at a high current density of 1.5 A g-1. The superior electrochemical performance of NHCS-O can be attributed to the hybrid structure, high N and O contents, and rich surface defects. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2016 • 214
    A computational analysis of the vibrational levels of molecular oxygen in low-pressure stationary and transient radio-frequency oxygen plasma
    Kemaneci, E. and Booth, J.-P. and Chabert, P. and Van Dijk, J. and Mussenbrock, T. and Brinkmann, R.P.
    PLASMA SOURCES SCIENCE AND TECHNOLOGY. Volume: 25 (2016)
    view abstract10.1088/0963-0252/25/2/025025

    Vibrational levels of molecular oxygen, O2(v < 42), are investigated in continuous and pulse-modulated low-pressure radio-frequency oxygen plasma with a global modelling approach. The model is benchmarked against a variety of pressure-, power- and time-resolved measurements of several inductive and asymmetric capacitive discharges available in the literature, and a good agreement is obtained. The sensitivity of the model with respect to the vibrational kinetics, the wall reactions and the spatial inhomogeneity of the charged particles are presented. The simulations without the vibrational levels are also shown for the sake of comparison. © 2016 IOP Publishing Ltd.

  • 2016 • 213
    Few-layer graphene modified with nitrogen-rich metallo-macrocyclic complexes as precursor for bifunctional oxygen electrocatalysts
    Morales, D.M. and Masa, J. and Andronescu, C. and Kayran, Y.U. and Sun, Z. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 222 (2016)
    view abstract10.1016/j.electacta.2016.11.092

    We propose a method for the formation of highly active bifunctional oxygen electrocatalysts, by exploiting the unique features of nitrogen-rich metallo-macrocyclic complexes and the structural and electronic properties of few-layer graphene. The precursors of the electrocatalysts were synthesized by sonication of graphite in DMF leading to exfoliation and the formation of few-layer graphene sheets in the presence of a suitable transition metal macrocyclic complex. After pyrolysis and subsequent mild calcination metal oxide nanoparticles as well as metal-nitrogen (MNx) moieties embedded within a N-doped graphitic carbon matrix are obtained. The formation, in-depth characterization and electrochemical performance of two different catalysts derived from Co and Ni containing precursor complexes are demonstrated. © 2016 Elsevier Ltd

  • 2015 • 212
    MAXNET Energy - Focusing Research in Chemical Energy Conversion on the Electrocatlytic Oxygen Evolution
    Auer, A.A. and Cap, S. and Antonietti, M. and Cherevko, S. and Deng, X. and Papakonstantinou, G. and Sundmacher, K. and Brüller, S. and Antonyshyn, I. and Dimitratos, N. and Davis, R.J. and Böhm, K.-H. and Fechler, N. and Freakley, S. and Grin, Y. and Gunnoe, B.T. and Haj-Hariri, H. and Hutchings, G. and Liang, H. and Mayrhofer, K.J.J. and Müllen, K. and Neese, F. and Ranjan, C. and Sankar, M. and Schlögl, R. and Schüth, F. and Spanos, I. and Stratmann, M. and Tüysüz, H. and Vidakovic-Koch, T. and Yi, Y. and Zangari, G.
    GREEN. Volume: 5 (2015)
    view abstract10.1515/green-2015-0021

    MAXNET Energy is an initiative of the Max Planck society in which eight Max Planck institutes and two external partner institutions form a research consortium aiming at a deeper understanding of the electrocatalytic conversion of small molecules. We give an overview of the activities within the MAXNET Energy research consortium. The main focus of research is the electrocatalytic water splitting reaction with an emphasis on the anodic oxygen evolution reaction (OER). Activities span a broad range from creation of novel catalysts by means of chemical or material synthesis, characterization and analysis applying innovative electrochemical techniques, atomistic simulations of state-of-the-art x-ray spectroscopy up to model-based systems analysis of coupled reaction and transport mechanisms. Synergy between the partners in the consortium is generated by two modes of cooperation - one in which instrumentation, techniques and expertise are shared, and one in which common standard materials and test protocols are used jointly for optimal comparability of results and to direct further development. We outline the special structure of the research consortium, give an overview of its members and their expertise and review recent scientific achievements in materials science as well as chemical and physical analysis and techniques. Due to the extreme conditions a catalyst has to endure in the OER, a central requirement for a good oxygen evolution catalyst is not only its activity, but even more so its high stability. Hence, besides detailed degradation studies, a central feature of MAXNET Energy is a standardized test setup/protocol for catalyst stability, which we propose in this contribution. ©2015 by De Gruyter Mouton.

  • 2015 • 211
    The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation
    Dong, W. and Reichenberger, S. and Chu, S. and Weide, P. and Ruland, H. and Barcikowski, S. and Wagener, P. and Muhler, M.
    JOURNAL OF CATALYSIS. Volume: 330 (2015)
    view abstract10.1016/j.jcat.2015.07.033

    Gold nanoparticles (NPs) synthesized by pulsed laser ablation of a gold target in water were efficiently deposited on TiO2 (P25) without any post-treatment yielding catalysts with Au loadings up to 10 wt%. Regardless of the loading, the Au NPs had a mean diameter of 8 nm before and after deposition. The ligand-free Au NPs strongly bind to TiO2 surface oxygen vacancies and maintain a homogeneous distribution with loadings up to 4 wt%, while a further increase in Au content up to 10 wt% results in additional weakly adsorbed Au NPs. The catalytic tests of the Au/TiO2 samples in the selective oxidation of ethanol in the liquid phase identified an optimal loading of 4 wt% resulting in the highest yield of acetic acid, which is ascribed to the homogeneous Au distribution and the adequate occupation of surface oxygen vacancies by strongly bound Au NPs without significant Au sintering during reaction. © 2015 Elsevier Inc. All rights reserved.

  • 2015 • 210
    Influence of the alkali metal cations on the activity of Pt(1 1 1) towards model electrocatalytic reactions in acidic sulfuric media
    Tymoczko, J. and Colic, V. and Ganassin, A. and Schuhmann, W. and Bandarenka, A.S.
    CATALYSIS TODAY. Volume: 244 (2015)
    view abstract10.1016/j.cattod.2014.07.007

    The impact of the alkali metal cations (Li+, Na+, K+, Rb+, Cs+) on the catalytic activity of Pt(1 1 1) electrodes towards model reactions (oxygen reduction, oxygen evolution, hydrogen evolution and hydrogen oxidation) in sulfuric acid has been evaluated. In contrast to essentially monotonic activity trends (i.e. from Li+ to Cs+) reported in the literature for alkaline media, the nature of the cations influences the activity of the Pt electrodes largely non-monotonously in the presence of SO4 2- ions. This is in certain cases due to the specifically adsorbing (bi)sulfate anions which make interactions between electrolyte components and reaction intermediates very complex. Surprisingly, the activity of the Pt(1 1 1) electrodes towards all investigated electrocatalytic reactions was substantially higher in Rb+ ions containing electrolytes. © 2014 Elsevier B.V. All rights reserved.

  • 2015 • 209
    Spectroscopic and Microscopic Investigations of Degradation Processes in Polymer Surface-Near Regions during the Deposition of SiOx Films
    Mitschker, F. and Dietrich, J. and Ozkaya, B., Dr. and De los Arcos, T., Dr. and Giner, I., Dr. and Awakowicz, P., Prof. and Grundmeier, G., Prof.
    PLASMA PROCESSES AND POLYMERS. Volume: 12 (2015)
    view abstract10.1002/ppap.201500085

    Atomic oxygen densities and fluences in a microwave plasma are determined by means of optical emission spectroscopy for different oxygen to hexamethyldisiloxane (HMDSO) ratios during deposition of SiOx and SiOxCyHz like coatings on molecularly defined organic surfaces. The plasma coatings are deposited on octadecanethiol self-assembled monolayers that serve as a sensor layer. They are used for tracing the interfacial changes induced during plasma deposition as a function of the O2 to HMDSO ratio and absolutely quantified atomic oxygen fluence. The interfacial chemical changes are monitored by means of polarization modulation IR reflection-absorption spectroscopy. The data reveal that significant oxidative degradation of the sensor layer is reached for exposure to an atomic oxygen fluence of 1.0 · 1022 m-2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 208
    Self-sufficient sensor for oxygen detection in packaging via radio-frequency identification
    Weigel, C. and Schneider, M. and Schmitt, J. and Hoffmann, M. and Kahl, S. and Jurisch, R.
    JOURNAL OF SENSORS AND SENSOR SYSTEMS. Volume: 4 (2015)
    view abstract10.5194/jsss-4-179-2015

    A new disposable radio-frequency identification (RFID) sensor for detecting oxygen in packages with a protective atmosphere is presented. For safety reasons and system costs in consumer packages, no battery or energy harvesting devices can be used. Each part of a package, especially in food packaging, must be completely safe even if it is swallowed. Several materials have been investigated that safely react with oxygen and thus change electrical parameters without the need of an additional energy supply. In particular linseed oil was tested, because it is known to react in oxygen-containing atmosphere from liquid to solid. Linseed oil is used not only as food but also as a key part in ecological paint coatings. A significant relative change of capacity was observed during linseed oil drying, which results in 20% after 5 h and 38% after 30 h at an oxygen concentration of 20.5 and 50% relative humidity, respectively. Pure unsaturated fatty acids were also tested in an oxygen-containing atmosphere and showed similar behaviour. The reaction speed is partially dependent on the level of unsaturation of fatty acids. The oxygen sensor is coupled with an RFID front end with an internal charge time measurement unit for capacity determination. The combination of sensor element, sensitive material and RFID allows for biocompatible and save systems that indicate the presence of oxygen within a package.

  • 2015 • 207
    Novel opportunities for thermal spray by PS-PVD
    Mauer, G. and Jarligo, M.O. and Rezanka, S. and Hospach, A. and Vaßen, R.
    SURFACE AND COATINGS TECHNOLOGY. Volume: 268 (2015)
    view abstract10.1016/j.surfcoat.2014.06.002

    Plasma spray-physical vapor deposition (PS-PVD) is a novel coating process based on plasma spraying. In contrast to conventional methods, deposition takes place not only from liquid splats but also from nano-sized clusters and from the vapor phase. This offers new opportunities to obtain advanced microstructures and thus to comply with the growing demands on modern functional coatings. Thin and dense ceramic coatings as well as highly porous columnar structures can be achieved, offering novel opportunities for the application of thermal spray technology. This study describes process conditions, which are relevant for the formation of particular microstructures in the PS-PVD process. Following the structure of the process, the feedstock treatment close to the plasma source, plasma particle interaction in the open jet and the formation of coating microstructures on the substrate are covered. Calculated results on the plasma particle interaction under PS-PVD process conditions were found to be in good agreement with OES results and microstructural observations. They show that the feedstock treatment along the very first trajectory segment between injector and jet expansion plays a key role. Varying the plasma parameters, feedstock treatment can be controlled to a broad extent. Consequently, the manifold nature of the feedstock species arriving on the substrate enables to achieve various coating microstructures. As examples, application specific features of PS-PVD coatings are reported for strain-tolerant thermal barrier coatings as well as for gas-tight oxygen transport membranes with high mixed electronic-ionic conductivity. © 2014 Elsevier B.V.

  • 2015 • 206
    Efficient Deposition of Semiconductor Powders for Photoelectrocatalysis by Airbrush Spraying
    Gutkowski, R. and Schäfer, D. and Nagaiah, T.C. and Heras, J.E.Y. and Busser, W. and Muhler, M. and Schuhmann, W.
    ELECTROANALYSIS. Volume: 27 (2015)
    view abstract10.1002/elan.201400363

    Powder catalysts were deposited as thin films on transparent conductive oxides (TCO) by means of an airbrush spray coating technique. Photoelectrocatalytic properties of the powder catalysts were characterized using photocurrent spectroscopy at different wavelengths demonstrating on the one hand the stability of the films and on the other hand the electrical connection with the electrode surface. The morphology and thickness of the deposited powder catalyst films on TCO were characterized using scanning electron microscopy. Aiming at photocatalytic water splitting, semiconductor powders like gallium oxide (Ga2O3) and zinc oxide (ZnO) were used as test samples to optimize the deposition technique resulting in thin homogeneous layers and good adhesion on the conductive substrate. The proposed airbrush deposition technique of powder catalysts allows closing an experimental gap between microheterogeneous systems and modified electrodes for finding suitable materials for photoelectrochemical water splitting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 205
    High-throughput screening of thin-film semiconductor material libraries II: Characterization of Fe-W-O libraries
    Meyer, R. and Sliozberg, K. and Khare, C. and Schuhmann, W. and Ludwig, Al.
    CHEMSUSCHEM. Volume: 8 (2015)
    view abstract10.1002/cssc.201402918

    Metal oxides are promising materials for solar water splitting. To identify suitable materials within the ternary system Fe-W-O, thin-film material libraries with combined thickness and compositional gradients were synthesized by combinatorial reactive magnetron sputtering. These libraries (>1000 different samples) were investigated by means of structural and functional high-throughput characterization techniques to establish correlations between composition, crystallinity, morphology, thickness, and photocurrent density in the compositional range between (Fe6W94)Ox and (Fe61W39)Ox. In addition to the well-known phase WO3, the binary phase W5O14 and the ternary phase Fe2O6W show enhanced photoelectrochemical activity. The highest photocurrent density of 65 μA cm-2 was achieved for the composition (Fe15W85)Ox, which contains the W5O14 phase and has a thickness of 1060 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 204
    High-Throughput Screening of Thin-Film Semiconductor Material Libraries I: System Development and Case Study for Ti-W-O
    Sliozberg, K. and Schäfer, D. and Erichsen, T. and Meyer, R. and Khare, C. and Ludwig, Al. and Schuhmann, W.
    CHEMSUSCHEM. Volume: 8 (2015)
    view abstract10.1002/cssc.201402917

    An automated optical scanning droplet cell (OSDC) enables high-throughput quantitative characterization of thin-film semiconductor material libraries. Photoelectrochemical data on small selected measurement areas are recorded including intensity-dependent photopotentials and -currents, potentiodynamic and potentiostatic photocurrents, as well as photocurrent (action) spectra. The OSDC contains integrated counter and double-junction reference electrodes and is fixed on a precise positioning system. A Xe lamp with a monochromator is coupled to the cell through a thin poly(methyl methacrylate) (PMMA) optical fiber. A specifically designed polytetrafluoroethylene (PTFE) capillary tip is pressed on the sample surface and defines through its diameter the homogeneously illuminated measurement area. The overall and wavelength-resolved irradiation intensities and the cell surface area are precisely determined and calibrated. System development and its performance are demonstrated by means of screening of a Ti-W-O thin film. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2015 • 203
    Very low amount of TiO2 on N-doped carbon nanotubes significantly improves oxygen reduction activity and stability of supported Pt nanoparticles
    Zhao, A. and Masa, J. and Xia, W.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS. Volume: 17 (2015)
    view abstract10.1039/c5cp00369e

    Electrochemical corrosion is a major problem for carbon materials used in electrocatalysis. Highly dispersed TiO2 was deposited on O-functionalized and N-doped carbon nanotubes by chemical vapour deposition to tackle the carbon corrosion problem. Very low Ti loadings of about 1 wt% were applied to minimize the negative influence of TiO2 as a semiconductor on the high conductivity of carbon materials. Both N doping and TiO2 coating facilitate strong metal-support interactions and favour the formation of small Pt particles. N doping improved the intrinsic catalytic activity of the carbon support and enhanced the conductivity due to the removal of surface oxygen groups, while the negative effect of TiO2 on conductivity is counterbalanced by its promoting effect on metal-support interactions leading to enhanced overall catalytic performance. Pt/TiO2/NCNTs showed the highest ORR activity, and significantly outperformed Pt/NCNTs in electrochemical stability tests. © the Owner Societies 2015.

  • 2015 • 202
    Stability of Dealloyed Porous Pt/Ni Nanoparticles
    Baldizzone, C. and Gan, L. and Hodnik, N. and Keeley, G.P. and Kostka, A. and Heggen, M. and Strasser, P. and Mayrhofer, K.J.J.
    ACS CATALYSIS. Volume: 5 (2015)
    view abstract10.1021/acscatal.5b01151

    We provide a comprehensive durability assessment dedicated to a promising class of electrocatalysts for the oxygen reduction reaction (i.e., porous platinum nanoparticles). The stability of these nanoengineered open structures is tested under two accelerated degradation test conditions (ADT), particularly selected to mimic the potential regimes experienced by the catalyst during the operative life of a fuel cell (i.e., load cycles (up to 1.0 VRHE) and start-up cycles (up to 1.4 VRHE)). To understand the evolution of the electrochemical performance, the catalyst properties are investigated by means of fundamental rotating disc electrode studies, identical location-transmission electron microscopy (IL-TEM) coupled with electron energy loss spectroscopy chemical mapping (IL-EELS), and post-use chemical analysis and online highly sensitive potential resolved dissolution concentration monitoring by scanning flow cell inductively coupled plasma-mass spectrometry (SFC-ICP-MS). The experimental results on the nanoporous Pt revealed distinctive degradation mechanisms that could potentially affect a wide range of other nanoengineered open structures. The study concludes that, although providing promising activity performance, under the relevant operational conditions of fuel cells, the nanoporosity is only metastable and subjected to a progressive reorganization toward the minimization of the nanoscale curvature. The rate and pathways of this specific degradation mechanism together with other well-known degradation mechanisms like carbon corrosion and platinum dissolution are strongly dependent on the selected upper limit potential, leading to distinctly different durability performance. © 2015 American Chemical Society.

  • 2015 • 201
    Oxygen-plasma-functionalized carbon nanotubes as supports for platinum-ruthenium catalysts applied in electrochemical methanol oxidation
    Chetty, R. and Maniam, K.K. and Schuhmann, W. and Muhler, M.
    CHEMPLUSCHEM. Volume: 80 (2015)
    view abstract10.1002/cplu.201402192

    Multiwalled carbon nanotubes (CNTs) functionalized by oxygen plasma were used as a support for platinum-ruthenium nanoparticles for electrochemical methanol oxidation. The influence of plasma treatment time on the electrocatalytic activity was investigated by cyclic voltammetry, CO stripping voltammetry, and chronoamperometry. The electrocatalysts were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that oxygen plasma treatment led to the formation of -CO and -COO groups on the CNT surface. Platinum-ruthenium nanoparticles dispersed with an optimum plasma treatment time of 30 min exhibited the maximum catalytic activity towards methanol oxidation. The rationale for the high catalytic activity is discussed. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2015 • 200
    Evaluation of the Electrochemical Stability of Model Cu-Pt(111) Near-Surface Alloy Catalysts
    Tymoczko, J. and Calle-Vallejo, F. and Čolić, V. and Schuhmann, W. and Bandarenka, A.S.
    ELECTROCHIMICA ACTA. Volume: 179 (2015)
    view abstract10.1016/j.electacta.2015.02.110

    Better understanding of the factors responsible for the long-term stability of electrocatalysts is of increasing importance for the development of new generations of efficient electrode materials relevant for sustainable energy provision. Therefore, experiments with model, often single-crystal catalytic surfaces are of significance for fundamental electrochemistry and technological applications. Among model electrocatalysts, near-surface alloys (NSAs) of Pt with Cu, Ni and other metals formed via electrochemical deposition and thermal annealing have shown remarkable properties, demonstrating high activity towards a number of important reactions, including the oxygen reduction reaction (ORR) and CO oxidation. However, relatively little is known about the electrochemical stability and mechanisms of degradation of model NSAs. In this work, we employ a simple electrochemical approach, supported by density functional theory calculations, to evaluate the stability of Cu-Pt(111) NSAs in 0.1 M HClO4. Our results show that ∼30% of the Cu atoms initially incorporated into the second atomic layer of Pt are lost within the first 2000 cycles performed between 0.05 V and 1.0 V (RHE). After 5000 cycles, ca. half of the Cu atoms initially placed in the second atomic layer still remained in the subsurface region. The dissolution of Cu has a substantial impact on the measured shift in the average OH-binding energy for the catalyst surface and, consequently, on the ORR activity. Interestingly, after dissolution of Cu from NSAs, voltammetric features, which are characteristic to the Pt(111) facets, are partially restored suggesting the formation of NSA and Pt(111) domains in the resulting surface. © 2015 Elsevier Ltd. All rights reserved.

  • 2015 • 199
    The topical use of non-thermal dielectric barrier discharge (DBD): Nitric oxide related effects on human skin
    Heuer, K. and Hoffmanns, M.A. and Demir, E. and Baldus, S. and Volkmar, C.M. and Röhle, M. and Fuchs, P.C. and Awakowicz, P. and Suschek, C.V. and Opländer, C.
    NITRIC OXIDE - BIOLOGY AND CHEMISTRY. Volume: 44 (2015)
    view abstract10.1016/j.niox.2014.11.015

    Dielectric barrier discharge (DBD) devices generate air plasma above the skin containing active and reactive species including nitric oxide (NO). Since NO plays an essential role in skin physiology, a topical application of NO by plasma may be useful in the treatment of skin infections, impaired microcirculation and wound healing. Thus, after safety assessments of plasma treatment using human skin specimen and substitutes, NO-penetration through the epidermis, the loading of skin tissue with NO-derivates in vitro and the effects on human skin in vivo were determined. After the plasma treatment (0-60 min) of skin specimen or reconstructed epidermis no damaging effects were found (TUNEL/MTT). By Franz diffusion cell experiments plasma-induced NO penetration through epidermis and dermal enrichment with NO related species (nitrite 6-fold, nitrate 7-fold, nitrosothiols 30-fold) were observed. Furthermore, skin surface was acidified ( ~ pH 2.7) by plasma treatment (90 s). Plasma application on the forearms of volunteers increased microcirculation fourfold in 1-2 mm and twofold in 6-8 mm depth in the treated skin areas. Regarding the NO-loading effects, skin acidification and increase in dermal microcirculation, plasma devices represent promising tools against chronic/infected wounds. However, efficacy of plasma treatment needs to be quantified in further studies and clinical trials. © 2014 Elsevier Inc. All rights reserved.

  • 2015 • 198
    On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction
    Masa, J. and Xia, W. and Muhler, M. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 54 (2015)
    view abstract10.1002/anie.201500569

    The notion of metal-free catalysts is used to refer to carbon materials modified with nonmetallic elements. However, some claimed metal-free catalysts are prepared using metal-containing precursors. It is highly contested that metal residues in nitrogen-doped carbon (NC) catalysts play a crucial role in the oxygen reduction reaction (ORR). In an attempt to reconcile divergent views, a definition for truly metal-free catalysts is proposed and the differences between NC and M-Nx/C catalysts are discussed. Metal impurities at levels usually undetectable by techniques such as XPS, XRD, and EDX significantly promote the ORR. Poisoning tests to mask the metal ions reveal the involvement of metal residues as active sites or as modifiers of the electronic structure of the active sites in NC. The unique merits of both M-Nx/C and NC catalysts are discussed to inspire the development of more advanced nonprecious-metal catalysts for the ORR. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 197
    Mechanism of protection of catalysts supported in redox hydrogel films
    Fourmond, V. and Stapf, S. and Li, H. and Buesen, D. and Birrell, J. and Rüdiger, O. and Lubitz, W. and Schuhmann, W. and Plumeré, N. and Léger, C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 137 (2015)
    view abstract10.1021/jacs.5b01194

    The use of synthetic inorganic complexes as supported catalysts is a key route in energy production and in industrial synthesis. However, their intrinsic oxygen sensitivity is sometimes an issue. Some of us have recently demonstrated that hydrogenases, the fragile but very efficient biological catalysts of H2 oxidation, can be protected from O2 damage upon integration into a film of a specifically designed redox polymer. Catalytic oxidation of H2 produces electrons which reduce oxygen near the film/solution interface, thus providing a self-activated protection from oxygen [Plumeré et al., Nat Chem. 2014, 6, 822-827]. Here, we rationalize this protection mechanism by examining the time-dependent distribution of species in the hydrogenase/polymer film, using measured or estimated values of all relevant parameters and the numerical and analytical solutions of a realistic reaction-diffusion scheme. Our investigation sets the stage for optimizing the design of hydrogenase-polymer films, and for expanding this strategy to other fragile catalysts. © 2015 American Chemical Society.

  • 2015 • 196
    A Redox Hydrogel Protects the O2-Sensitive [FeFe]-Hydrogenase from Chlamydomonas reinhardtii from Oxidative Damage
    Oughli, A.A. and Conzuelo, F. and Winkler, M. and Happe, T. and Lubitz, W. and Schuhmann, W. and Rüdiger, O. and Plumeré, N.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 54 (2015)
    view abstract10.1002/anie.201502776

    The integration of sensitive catalysts in redox matrices opens up the possibility for their protection from deactivating molecules such as O2. [FeFe]-hydrogenases are enzymes catalyzing H2 oxidation/production which are irreversibly deactivated by O2. Therefore, their use under aerobic conditions has never been achieved. Integration of such hydrogenases in viologen-modified hydrogel films allows the enzyme to maintain catalytic current for H2 oxidation in the presence of O2, demonstrating a protection mechanism independent of reactivation processes. Within the hydrogel, electrons from the hydrogenase-catalyzed H2 oxidation are shuttled to the hydrogel-solution interface for O2 reduction. Hence, the harmful O2 molecules do not reach the hydrogenase. We illustrate the potential applications of this protection concept with a biofuel cell under H2/O2 mixed feed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 195
    Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes
    Mei, B. and Pedersen, T. and Malacrida, P. and Bae, D. and Frydendal, R. and Hansen, O. and Vesborg, P.C.K. and Seger, B. and Chorkendorff, I.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 119 (2015)
    view abstract10.1021/acs.jpcc.5b04407

    Stabilizing efficient photoabsorbers for solar water splitting has recently shown significant progress with the development of various protection layers. Suitable protection layers for tandem devices should be conductive, transparent, and stable in strongly acidic or alkaline solutions. This paper shows that under certain conditions n-type semiconductors, such as TiO2, can be used as protection layers for Si-based photoanodes. It also provides evidence that even in a photoanode assembly TiO2 is conducting only electrons (not holes as in p-type protection layers), and therefore TiO2 can be described as a simple ohmic contact. This renders n-type semiconductors, such as TiO2, to be versatile and simple protection layers, which can be used for photoanodes and as previously shown for photocathodes. The ohmic behavior of n-type TiO2 in a Si/TiO2-photoanode assembly is demonstrated under dark and illuminated conditions by performing the oxygen evolution reaction (OER) and using the Fe(II)/Fe(III) redox couple. These measurements reveal that the performance of the Si/TiO2-photoanode assembly is strongly dependent on the TiO2/electrolyte interaction. Finally, the conditions and requirements that make TiO2 generally applicable for photoanode assemblies, and thus for protecting tandem devices, are outlined and quantitatively shown by band diagram calculations. The results presented here provide the understanding required for the design of highly efficient and stable photoelectrochemical water splitting devices. © 2015 American Chemical Society.

  • 2015 • 194
    High-quality functionalized few-layer graphene: Facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction
    Sun, Z. and Masa, J. and Weide, P. and Fairclough, S.M. and Robertson, A.W. and Ebbinghaus, P. and Warner, J.H. and Tsang, S.C.E. and Muhler, M. and Schuhmann, W.
    JOURNAL OF MATERIALS CHEMISTRY A. Volume: 3 (2015)
    view abstract10.1039/c5ta02248g

    Functionalization of graphene is fundamental to facilitating its processing and offers a wide scope for advanced applications. Here we demonstrate a facile, highly efficient and mild covalent functionalization of graphene using HNO3 vapour. This results in functionalized few-layer graphene (FLG) that is high in both quantity and quality. We fully characterized the structure and defect level of functionalized FLG by X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The results from this analysis show the tunability of the surface oxygen functionalities of FLG achieved through controlling the oxidation temperature without affecting the major intrinsic properties of graphene. This allows for further doping for applications, for example with nitrogen as a metal-free catalyst in the oxygen reduction reaction. © 2015 The Royal Society of Chemistry.

  • 2015 • 193
    Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF
    Köser, J. and Becker, L.G. and Vorobiev, N. and Schiemann, M. and Scherer, V. and Böhm, B. and Dreizler, A.
    APPLIED PHYSICS B: LASERS AND OPTICS. Volume: 121 (2015)
    view abstract10.1007/s00340-015-6253-3

    This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90–125 µm and a significant amount of volatiles (36 wt%) were injected along the burner’s centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface. © 2015, Springer-Verlag Berlin Heidelberg.

  • 2015 • 192
    General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties
    Mezzavilla, S. and Baldizzone, C. and Mayrhofer, K.J.J. and Schüth, F.
    ACS APPLIED MATERIALS AND INTERFACES. Volume: 7 (2015)
    view abstract10.1021/acsami.5b02580

    A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis. © 2015 American Chemical Society.

  • 2015 • 191
    Multiferroic Vacancies at Ferroelectric PbTiO3 Surfaces
    Shimada, T. and Wang, J. and Araki, Y. and Mrovec, M. and Elsässer, C. and Kitamura, T.
    PHYSICAL REVIEW LETTERS. Volume: 115 (2015)
    view abstract10.1103/PhysRevLett.115.107202

    Multiferroics in nanoscale dimensions are promising for novel functional device paradigms, such as magnetoelectric memories, due to an intriguing cross-coupling between coexisting ferroelectric and (anti)ferromagnetic order parameters. However, the ferroic order is inevitably destroyed below the critical dimension of several nanometers. Here, we demonstrate a new path towards atomic-size multiferroics while resolving the controversial origin of dilute ferromagnetism that unexpectedly emerges in nanoparticles of nonmagnetic ferroelectric PbTiO3. Systematic exploration using predictive quantum-mechanical calculations demonstrates that oxygen vacancies formed at surfaces induce ferromagnetism due to local nonstoichiometry and orbital symmetry breaking. The localized character of the emerged magnetization allows an individual oxygen vacancy to act as an atomic-scale multiferroic element with a nonlinear magnetoelectric effect that involves rich ferromagnetic-antiferromagnetic-nonmagnetic phase transitions in response to switching of the spontaneous polarization. © 2015 American Physical Society.

  • 2015 • 190
    Multiferroic grain boundaries in oxygen-deficient ferroelectric lead titanate
    Shimada, T. and Wang, J. and Ueda, T. and Uratani, Y. and Arisue, K. and Mrovec, M. and Elsä Sser, C. and Kitamura, T.
    NANO LETTERS. Volume: 15 (2015)
    view abstract10.1021/nl502471a

    Ultimately thin multiferroics arouse remarkable interest, motivated by the diverse utility of coexisting ferroelectric and (anti)ferromagnetic order parameters for novel functional device paradigms. However, the ferroic order is inevitably destroyed below a critical size of several nanometers. Here, we demonstrate a new path toward realization of atomically thin multiferroic monolayers while resolving a controversial origin for unexpected "-dilute ferromagnetism" emerged in nanocrystals of nonmagnetic ferroelectrics PbTiO3. The state-of-the-art hybrid functional of Hartree-Fock and density functional theories successfully identifies the origin and underlying physics; oxygen vacancies interacting with grain boundaries (GBs) bring about (anti)ferromagnetism with localized spin moments at the neighboring Ti atoms. This is due to spin-polarized defect states with broken orbital symmetries at GBs. In addition, the energetics of oxygen vacancies indicates their self-assembling nature at GBs resulting in considerably high concentration, which convert the oxygen-deficient GBs into multiferroic monolayers due to their atomically thin interfacial structure. This synthetic concept that realizes multiferroic and multifunctional oxides in a monolayered geometry through the self-assembly of atomic defects and grain boundary engineering opens a new avenue for promising paradigms of novel functional devices. © 2014 American Chemical Society.

  • 2015 • 189
    Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide
    Gu, D. and Jia, C.-J. and Weidenthaler, C. and Bongard, H.-J. and Spliethoff, B. and Schmidt, W. and Schüth, F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 137 (2015)
    view abstract10.1021/jacs.5b06336

    Co3O4 with a spinel structure is a very active oxide catalyst for the oxidation of CO. In such catalysts, octahedrally coordinated Co3+ is considered to be the active site, while tetrahedrally coordinated Co2+ is assumed to be basically inactive. In this study, a highly ordered mesoporous CoO has been prepared by H2 reduction of nanocast Co3O4 at low temperature (250 °C). The as-prepared CoO material, which has a rock-salt structure with a single Co2+ octahedrally coordinated by lattice oxygen in Fm3¯m symmetry, exhibited unexpectedly high activity for CO oxidation. Careful investigation of the catalytic behavior of mesoporous CoO catalyst led to the conclusion that the oxidation of surface Co2+ to Co3+ causes the high activity. Other mesoporous spinels (CuCo2O4, CoCr2O4, and CoFe2O4) with different Co species substituted with non/low-active metal ions were also synthesized to investigate the catalytically active site of cobalt-based catalysts. The results show that not only is the octahedrally coordinated Co3+ highly active but also the octahedrally coordinated Co2+ species in CoFe2O4 with an inverse spinel structure shows some activity. These results suggest that the octahedrally coordinated Co2+ species is easily oxidized and shows high catalytic activity for CO oxidation. © 2015 American Chemical Society.

  • 2015 • 188
    Atomic oxygen dynamics in an air dielectric barrier discharge: A combined diagnostic and modeling approach
    Baldus, S. and Schröder, D. and Bibinov, N. and Schulz-Von Der Gathen, V. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 48 (2015)
    view abstract10.1088/0022-3727/48/27/275203

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of nO3 = 6 x 10^16 cm. Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of nO = 3 x 1016 cm-3 between the electrodes.

  • 2015 • 187
    Co3O4-MnO2-CNT Hybrids Synthesized by HNO3 Vapor Oxidation of Catalytically Grown CNTs as OER Electrocatalysts
    Xie, K. and Masa, J. and Madej, E. and Yang, F. and Weide, P. and Dong, W. and Muhler, M. and Schuhmann, W. and Xia, W.
    CHEMCATCHEM. Volume: 7 (2015)
    view abstract10.1002/cctc.201500469

    An efficient two-step gas-phase method was developed for the synthesis of Co3O4-MnO2-CNT hybrids used as electrocatalysts in the oxygen evolution reaction (OER). Spinel Co-Mn oxide was used for the catalytic growth of multiwalled carbon nanotubes (CNTs) and the amount of metal species remaining in the CNTs was adjusted by varying the growth time. Gas-phase treatment in HNO3 vapor at 200 °C was performed to 1)open the CNTs, 2)oxidize encapsulated Co nanoparticles to Co3O4 as well as MnO nanoparticles to MnO2, and 3)to create oxygen functional groups on carbon. The hybrid demonstrated excellent OER activity and stability up to 37.5h under alkaline conditions, with longer exposure to HNO3 vapor up to 72h beneficial for improved electrocatalytic properties. The excellent OER performance can be assigned to the high oxidation states of the oxide nanoparticles, the strong electrical coupling between these oxides and the CNTs as well as favorable surface properties rendering the hybrids a promising alternative to noble metal based OER catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 186
    Using cavity microelectrodes for electrochemical noise studies of oxygen-evolving catalysts
    Rincón, R.A. and Battistel, A. and Ventosa, E. and Chen, X. and Nebel, M. and Schuhmann, W.
    CHEMSUSCHEM. Volume: 8 (2015)
    view abstract10.1002/cssc.201402855

    Cavity microelectrodes were used as a binder-free platform to evaluate oxygen evolution reaction (OER) electrocatalysts with respect to gas bubble formation and departure. Electrochemical noise measurements were performed by using RuO2 as a benchmark catalyst and the perovskite La0.58Sr0.4Fe0.8Co0.2O3 as a non-noble metal OER catalyst with lower intrinsic conductivity. Changes in the current during the OER originate from variations in electrolyte resistance during the formation of the gas phase and partial coverage of the active area. Fluctuations observed in current and conductance transients were used to establish the contribution from the ohmic overpotential and to determine the characteristic frequency of oxygen evolution. The proposed quantitative determination of gas bubble growth and departure opens up the route for a rational interface design by considering gas bubble growth and departure as a main contributing factor to the overall electrocatalytic activity at high current densities. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2015 • 185
    Elementary surface processes during reactive magnetron sputtering of chromium
    Monje, S. and Corbella, C. and von Keudell, A.
    JOURNAL OF APPLIED PHYSICS. Volume: 118 (2015)
    view abstract10.1063/1.4932150

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400-800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O-2 of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals. (C) 2015 AIP Publishing LLC.

  • 2015 • 184
    CNT-TiO2-δ composites for improved co-catalyst dispersion and stabilized photocatalytic hydrogen production
    Chen, P. and Wang, L. and Wang, P. and Kostka, A. and Wark, M. and Muhler, M. and Beranek, R.
    CATALYSTS. Volume: 5 (2015)
    view abstract10.3390/catal5010270

    Composites consisting of carbon nanotubes (CNTs) grown directly on oxygen-deficient anatase TiO2 (TiO2-δ) were synthesized by a two-step chemical vapor deposition (CVD) method and applied in photocatalytic hydrogen production from aqueous methanol solutions using photodeposited Pt as the co-catalyst. Thermogravimetry coupled with mass spectroscopy, X-ray diffraction, scanning electron microscopy, photocurrent analysis, X-ray photoelectron spectroscopy, and (scanning) transmission electron microscopy were performed to investigate the physical and (photo)chemical properties of the synthesized CNT-TiO2-δ composites before and after photocatalytic methanol reforming. The initial photocatalytic activity of TiO2 was found to be significantly improved in the presence of oxygen vacancies. An optimized amount (~7.2 wt%) of CNTs grown on the TiO2-δ surface led to a highly effective stabilization of the photocatalytic performance of TiO2 -δ, which is attributed to the improved dispersion and stability of the photodeposited Pt co-catalyst nanoparticles and enhanced separation efficiency of photogenerated electron-hole pairs, rendering the photocatalysts less prone to deactivation. © 2015, MDPI AG. All rights reserved.

  • 2015 • 183
    Mullite: Crystal Structure and Related Properties
    Schneider, H. and Fischer, R.X. and Schreuer, J.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY. Volume: 98 (2015)
    view abstract10.1111/jace.13817

    Mullite is certainly one of the most important oxide materials for both conventional and advanced ceramics. Mullite belongs to the compositional series of orthorhombic aluminosilicates with the general composition Al2(Al2+2xSi2-2x)O10-x. Main members are sillimanite (x = 0), stoichiometric 3/2-mullite (x = 0.25), 2/1-mullite (x = 0.40), and the SiO2-free phase ι-alumina (x = 1, crystal structure not known). This study gives an overview on the present state of research regarding single crystal mullite. Following a short introduction, the second part of the review focuses on the crystal structure of mullite. In particular, the characteristic mullite-type structural backbone of parallel chains consisting of edge-sharing MO6 octahedra and their specific cross-linkage by TO4 tetrahedra is explained in detail, the role of cation disorder and structural oxygen vacancies is addressed, and the possibility of cation substitution on different sites is discussed. The third part of the study deals with physical properties being relevant for technical applications of mullite and includes mechanical properties (e.g., elasticity, compressibility, strength, toughness, creep), thermal properties (e.g., thermal expansion, heat capacity, atomic diffusion, thermal conductivity), electrical conductivity, and optical properties. Special emphasis is put on structure-property relationships which allow for interpretation of corresponding experimental data and offer in turn the possibility to tailor new mullite materials with improved properties. Finally, the reported anomalies and discontinuities in the evolution of certain physical properties with temperature are summarized and critically discussed. © 2015 The American Ceramic Society.

  • 2015 • 182
    Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type NaxNi0.22Co0.11Mn0.66O2-NaTi2(PO4)3
    Ventosa, E. and Buchholz, D. and Klink, S. and Flox, C. and Chagas, L.G. and Vaalma, C. and Schuhmann, W. and Passerini, S. and Morante, J.R.
    CHEMICAL COMMUNICATIONS. Volume: 51 (2015)
    view abstract10.1039/c4cc09597a

    We report the first proof of concept for a non-aqueous semi-solid flow battery (SSFB) based on Na-ion chemistry using P2-type NaxNi0.22Co0.11Mn0.66O2 and NaTi2(PO4)3 as positive and negative electrodes, respectively. This concept opens the door for developing a new low-cost type of non-aqueous semi-solid flow batteries based on the rich chemistry of Na-ion intercalating compounds. © The Royal Society of Chemistry 2015.

  • 2015 • 181
    Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
    Calle-Vallejo, F. and Tymoczko, J. and Colic, V. and Vu, Q.H. and Pohl, M.D. and Morgenstern, K. and Loffreda, D. and Sautet, P. and Schuhmann, W. and Bandarenka, A.S.
    SCIENCE. Volume: 350 (2015)
    view abstract10.1126/science.aab3501

    A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.

  • 2015 • 180
    Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout
    Pinyou, P. and Conzuelo, F. and Sliozberg, K. and Vivekananthan, J. and Contin, A. and Pöller, S. and Plumeré, N. and Schuhmann, W.
    BIOELECTROCHEMISTRY. Volume: 106 (2015)
    view abstract10.1016/j.bioelechem.2015.04.003

    A miniaturized biofuel cell (BFC) is powering an electrolyser invoking a glucose concentration dependent formation of a dye which can be determined spectrophotometrically. This strategy enables instrument free analyte detection using the analyte-dependent BFC current for triggering an optical read-out system. A screen-printed electrode (SPE) was used for the immobilization of the enzymes glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) for the biocatalytic oxidation of glucose and reduction of molecular oxygen, respectively. The miniaturized BFC was switched-on using small sample volumes (ca. 60μL) leading to an open-circuit voltage of 567mV and a maximal power density of (6.8±0.6) μWcm-2. The BFC power was proportional to the glucose concentration in a range from 0.1 to 1.0mM (R2=0.991). In order to verify the potential instrument-free analyte detection the BFC was directly connected to an electrochemical cell comprised of an optically-transparent SPE modified with methylene green (MG). The reduction of the electrochromic reporter compound invoked by the voltage and current flow applied by the BFC let to MG discoloration, thus allowing the detection of glucose. © 2015 Elsevier B.V..

  • 2015 • 179
    Nitrogen-doped carbon cloth as a stable self-supported cathode catalyst for air/H2-breathing alkaline fuel cells
    Vivekananthan, J. and Masa, J. and Chen, P. and Xie, K. and Muhler, M. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 182 (2015)
    view abstract10.1016/j.electacta.2015.09.064

    The power output of a fuel cell is limited by among others, the intrinsic activity of the active matrix and the mass transport of the products and reactants. Of equally crucial importance is the long-term durability of the cell components including the electrocatalysts. Herein, carbon cloth (CC) was functionalized with nitrogen-containing groups by treatment with NH3 at 400 °C or by pyrolysis of a composite of polypyrrole on CC at 800 °C. The resulting N-doped CC (NCC) was employed as an air-breathing cathode in a custom-made air/H2 alkaline fuel cell, serving as the current collector as well as catalytic matrix with enhanced oxygen transport. The cell exhibited high operational durability with only 2% loss in activity after 25 days and delivered a maximum power density of 120 mW m-2 at a voltage of 0.35 V. The concept of a self-supported highly stable metal-free catalyst and the breathing H2/air cell design provide platforms for the design and investigation of catalysts. Moreover, a higher cell voltage can be realized if the cell is operated under pressurized conditions or by replacing air with O2. © 2015 Published by Elsevier Ltd.

  • 2014 • 178
    Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules
    Fichtl, M.B. and Schumann, J. and Kasatkin, I. and Jacobsen, N. and Behrens, M. and Schlögl, R. and Muhler, M. and Hinrichsen, O.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 53 (2014)
    view abstract10.1002/anie.201400575

    Different surface sites of solid catalysts are usually quantified by dedicated chemisorption techniques from the adsorption capacity of probe molecules, assuming they specifically react with unique sites. In case of methanol synthesis catalysts, the Cu surface area is one of the crucial parameters in catalyst design and was for over 25 years commonly determined using diluted N2O. To disentangle the influence of the catalyst components, different model catalysts were prepared and characterized using N2O, temperature programmed desorption of H2, and kinetic experiments. The presence of ZnO dramatically influences the N2O measurements. This effect can be explained by the presence of oxygen defect sites that are generated at the Cu-ZnO interface and can be used to easily quantify the intensity of Cu-Zn interaction. N2O in fact probes the Cu surface plus the oxygen vacancies, whereas the exposed Cu surface area can be accurately determined by H2. A combination of N2O reactive frontal chromatography and H2 temperature-programmed desorption is used to analyze the interplay of copper and zinc oxide in methanol synthesis catalysts. This method provides an easy in situ approach to quantify the direct copper-zinc interaction (SMSI effect) and offers an important possibility to rational catalyst design also for other supported metal catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 177
    Metal-free catalysts for oxygen reduction in alkaline electrolytes: Influence of the presence of Co, Fe, Mn and Ni inclusions
    Masa, J. and Zhao, A. and Wei, X. and Muhler, M. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 128 (2014)
    view abstract10.1016/j.electacta.2013.11.026

    Metal-free nitrogen modified carbon catalysts (NC) are very closely related to MNC catalysts which contain a transition metal(s) (M), usually Fe or Co as an essential constituent. We investigated the influence of metal inclusions on the activity of nitrogen-doped carbon black in the electrocatalysis of the oxygen reduction reaction (ORR). A reference metal-free NC catalyst was prepared by pyrolysis of a polypyrrole/Vulcan XC72 composite at 800 °C for 2 h under helium. Controlled amounts of Co, Fe, Mn and Ni in low concentrations were then introduced into NC by impregnating it with the corresponding meso-tetra(4-pyridyl) porphyrin metal complex followed by further pyrolysis at 650 °C for 2 h under helium. The resulting catalysts were investigated for ORR using rotating disk electrode and rotating-ring disk electrode voltammetry in 0.1 M KOH. Additionally, the rate of decomposition of hydrogen peroxide by the different catalysts was determined in order to probe the influence of the metal inclusions on the mechanism and selectivity of the ORR. The results show that Fe, Co and Mn inclusions cause a substantial decrease of the overpotential of the reaction and enhance the catalytic current, whereas the presence of Ni has a poisoning effect on ORR. In the presence of Fe, the catalysts apparently reduce oxygen selectively to OH- in a direct four electron transfer process as opposed to the two-step, two electron pathway involving hydrogen peroxide as an intermediate for the case of the NC catalyst. © 2013 Elsevier Ltd.

  • 2014 • 176
    Constant-distance mode SECM as a tool to Visualize local electrocatalytic activity of oxygen reduction catalysts
    Nebel, M. and Erichsen, T. and Schuhmann, W.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY. Volume: 5 (2014)
    view abstract10.3762/bjnano.5.14

    Multidimensional shearforce-based constant-distance mode scanning electrochemical microscopy (4D SF/CD-SECM) was utilized for the investigation of the activity distribution of oxygen reduction catalysts. Carbon-supported Pt model catalyst powders have been immobilized in recessed microelectrodes and compared to a spot preparation technique. Microcavities serve as platform for the binder-free catalyst sample preparation exhibiting beneficial properties for constant-distance mode SECM imaging concerning modified surface area and catalyst loading. The integration of the redox competition mode of SECM into the detection scheme of the 4D SF/CD mode is demonstrated for specifically adapting high-resolution SECM experiments to powder-based catalyst preparations. © 2014 Nebel et al.

  • 2014 • 175
    Monitoring of amorfization of the oxygen implanted layers in silicon wafers using photothermal radiometry and modulated free carrier absorption methods
    Maliński, M. and Pawlak, M. and Chrobak, Ł. and Pal, S. and Ludwig, Ar.
    APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING. Volume: 118 (2014)
    view abstract10.1007/s00339-014-8859-4

    This paper presents experimental results that characterize implanted layers in silicon being the result of a high energy implantation of O+6 ions. We propose a simple relation between attenuation of photothermal radiometry and/or modulated free carrier absorption amplitudes, the implanted layer thickness and its optical absorption coefficient. The thickness of the implanted layers was determined from capacitance–voltage characteristics and computations with the TRIM program. The obtained results allowed to estimate changes of the optical absorption coefficient of the oxygen implanted layers indicating the amorfization of the layers. © 2014, The Author(s).

  • 2014 • 174
    Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation
    Chew, L.M. and Kangvansura, P. and Ruland, H. and Schulte, H.J. and Somsen, C. and Xia, W. and Eggeler, G. and Worayingyong, A. and Muhler, M.
    APPLIED CATALYSIS A: GENERAL. Volume: 482 (2014)
    view abstract10.1016/j.apcata.2014.05.037

    CO2 hydrogenation to short-chain hydrocarbons was investigated over iron catalysts supported on oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (CNTs) and on silica, which were synthesized by the dry impregnation method using ammonium ferric citrate as precursor. The reduction of the calcined catalysts was examined in detail using temperature-programmed reduction in H2 and in situ X-ray absorption near-edge structure (XANES) analysis. The XANES results revealed that the mixture of hematite and magnetite was gradually transformed into wustite and metallic iron during heating in H2. Iron oxide nanoparticles supported on nitrogen-functionalized CNTs were easier to reduce compared to those on oxygen-functionalized CNTs indicating a promoting effect of the nitrogen functional groups. The interaction between iron oxide and silica was found to be much stronger inhibiting the reduction to metallic iron. As a result, the catalytic activity of iron nanoparticles supported on CNTs in CO2 hydrogenation at 360 °C, 25 bar and a H2:CO 2 ratio of 3 was almost twofold higher compared with iron supported on silica. CO2 was converted into C1-C5 hydrocarbons with CO and methane as major products over all catalysts. The Fe/NCNT catalyst achieved the highest olefin selectivity of 11% in the hydrocarbons range of C2-C5. In contrast, mostly paraffins were formed over the Fe/SiO2 catalyst. © 2014 Elsevier B.V.

  • 2014 • 173
    Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission
    Falk, M. and Alcalde, M. and Bartlett, P.N. and De Lacey, A.L. and Gorton, L. and Gutierrez-Sanchez, C. and Haddad, R. and Kilburn, J. and Leech, D. and Ludwig, R. and Magner, E. and Mate, D.M. and Conghaile, P.Ó. and Ortiz, R. and Pita, M. and Pöller, S. and Ruzgas, T. and Salaj-Kosla, U. and Schuhmann, W. and Sebelius, F. and Shao, M. and Stoica, L. and Sygmund, C. and Tilly, J. and Toscano, M.D. and Vivekananthan, J. and Wright, E. and Shleev, S.
    PLOS ONE. Volume: 9 (2014)
    view abstract10.1371/journal.pone.0109104

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 μA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. © 2014 Falk et al.

  • 2014 • 172
    Plasma spray physical vapor deposition of La1-x Sr x Co y Fe1-y O3-δ Thin-film oxygen transport membrane on porous metallic supports
    Jarligo, M.O. and Mauer, G. and Bram, M. and Baumann, S. and Vaßen, R.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 23 (2014)
    view abstract10.1007/s11666-013-0004-y

    Plasma spray physical vapor deposition (PS-PVD) is a very promising route to manufacture ceramic coatings, combining the efficiency of thermal spray processes and characteristic features of thin PVD coatings. Recently, this technique has been investigated to effectively deposit dense thin films of perovskites particularly with the composition of La0.58Sr 0.4Co0.2Fe0.8O3-δ (LSCF) for application in gas separation membranes. Furthermore, asymmetric type of membranes with porous metallic supports has also attracted research attention due to the advantage of good mechanical properties suitable for use at high temperatures and high permeation rates. In this work, both approaches are combined to manufacture oxygen transport membranes made of gastight LSCF thin film by PS-PVD on porous NiCoCrAlY metallic supports. The deposition of homogenous dense thin film is challenged by the tendency of LSCF to decompose during thermal spray processes, irregular surface profile of the porous metallic substrate and crack and pore-formation in typical ceramic thermal spray coatings. Microstructure formation and coating build-up during PS-PVD as well as the annealing behavior at different temperatures of LSCF thin films were investigated. Finally, measurements of leak rates and oxygen permeation rates at elevated temperatures show promising results for the optimized membranes. © 2013 ASM International.

  • 2014 • 171
    Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts
    Baldizzone, C. and Mezzavilla, S. and Carvalho, H.W.P. and Meier, J.C. and Schuppert, A.K. and Heggen, M. and Galeano, C. and Grunwaldt, J.-D. and Schüth, F. and Mayrhofer, K.J.J.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 53 (2014)
    view abstract10.1002/anie.201406812

    The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an advanced nano-structured support. Owing to the high specific activity and large active surface area, the catalyst shows extraordinary mass activity values of 1.0 AmgPt -1. Moreover, the material retains its initial active surface area and intrinsic activity during an extended accelerated aging test within the typical operation range. This excellent performance is achieved by confined space alloying of the nanoparticles in a controlled manner in the pores of the support. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 170
    Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces
    Pinkert, K. and Oschatz, M. and Borchardt, L. and Klose, M. and Zier, M. and Nickel, W. and Giebeler, L. and Oswald, S. and Kaskel, S. and Eckert, J.
    ACS APPLIED MATERIALS AND INTERFACES. Volume: 6 (2014)
    view abstract10.1021/am4055029

    Ordered mesoporous carbide-derived carbon (OM-CDC) with a specific surface area as high as 2900 m2 g-1 was used as a model system in a supercapacitor setup based on an ionic liquid (IL; 1-ethyl-3-methylimidazolium tetrafluoroborate) electrolyte. Our study systematically investigates the effect of surface functional groups on IL-based carbon supercapacitors. Oxygen and chlorine functionalization was achieved by air oxidation and chlorine treatment, respectively, to introduce well-defined levels of polarity. The latter was analyzed by means of water physisorption isotherms at 298 K, and the functionalization level was quantified with X-ray photoelectron spectroscopy. While oxygen functionalization leads to a decreased capacitance at higher power densities, surface chlorination significantly improves the rate capability. A high specific capacitance of up to 203 F g-1 was observed for a chlorinated OM-CDC sample with a drastically increased rate capability in a voltage range of ±3.4 V. © 2014 American Chemical Society.

  • 2014 • 169
    Versatile reactivity of a solvent-coordinated diiron(II) compound: Synthesis and dioxygen reactivity of a mixed-valent FeIIFe III species
    Majumdar, A. and Apfel, U.-P. and Jiang, Y. and Moënne-Loccoz, P. and Lippard, S.J.
    INORGANIC CHEMISTRY. Volume: 53 (2014)
    view abstract10.1021/ic4019585

    A new, DMF-coordinated, preorganized diiron compound [Fe 2(N-Et-HPTB)(DMF)4](BF4)3 (1) was synthesized, avoiding the formation of [Fe(N-Et-HPTB)](BF4) 2 (10) and [Fe2(N-Et-HPTB)(μ-MeCONH)](BF 4)2 (11), where N-Et-HPTB is the anion of N,N,N′,N′-tetrakis[2-(1-ethylbenzimidazolyl)]-2-hydroxy-1, 3-diaminopropane. Compound 1 is a versatile reactant from which nine new compounds have been generated. Transformations include solvent exchange to yield [Fe2(N-Et-HPTB)(MeCN)4](BF4)3 (2), substitution to afford [Fe2(N-Et-HPTB)(μ-RCOO)](BF 4)2 (3, R = Ph; 4, RCOO = 4-methyl-2,6-diphenyl benzoate]), one-electron oxidation by (Cp2Fe)(BF4) to yield a Robin-Day class II mixed-valent diiron(II,III) compound, [Fe 2(N-Et-HPTB)(μ-PhCOO)(DMF)2](BF4) 3 (5), two-electron oxidation with tris(4-bromophenyl)aminium hexachloroantimonate to generate [Fe2(N-Et-HPTB)Cl 3(DMF)](BF4)2 (6), reaction with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl to form [Fe5(N-Et-HPTB) 2(μ-OH)4(μ-O)(DMF)2](BF4) 4 (7), and reaction with dioxygen to yield an unstable peroxo compound that decomposes at room temperature to generate [Fe4(N-Et- HPTB)2(μ-O)3(H2O)2](BF 4)·8DMF (8) and [Fe4(N-Et-HPTB)2(μ-O) 4](BF4)2 (9). Compound 5 loses its bridging benzoate ligand upon further oxidation to form [Fe2(N-Et-HPTB)(OH) 2(DMF)2](BF4)3 (12). Reaction of the diiron(II,III) compound 5 with dioxygen was studied in detail by spectroscopic methods. All compounds (1-12) were characterized by single-crystal X-ray structure determinations. Selected compounds and reaction intermediates were further examined by a combination of elemental analysis, electronic absorption spectroscopy, Mössbauer spectroscopy, EPR spectroscopy, resonance Raman spectroscopy, and cyclic voltammetry. © 2013 American Chemical Society.

  • 2014 • 168
    Oxygen-deficient titania as alternative support for Pt catalysts for the oxygen reduction reaction
    Zhao, A. and Masa, J. and Xia, W.
    JOURNAL OF ENERGY CHEMISTRY. Volume: 23 (2014)
    view abstract10.1016/S2095-4956(14)60202-3

    Insufficient electrochemical stability is a major challenge for carbon materials in oxygen reduction reaction (ORR) due to carbon corrosion and insufficient metal-support interactions. In this work, titania is explored as an alternative support for Pt catalysts. Oxygen deficient titania samples including TiO2-x and TiO2-xNy were obtained by thermal treatment of anatase TiO2 under flowing H2 and NH3, respectively. Pt nanoparticles were deposited on the titania by a modified ethylene glycol method. The samples were characterized by N2-physisorption, X-ray diffraction and X-ray photoelectron spectroscopy. The ORR activity and long-term stability of supported Pt catalysts were evaluated using linear sweep voltammetry and chronoamperometry in 0.1 mol/L HClO4. Pt/TiO2-x and Pt/TiO2-xNy showed higher ORR activities than Pt/TiO2 as indicated by higher onset potentials. Oxygen deficiency in TiO2-x and TiO2-xNy contributed to the high ORR activity due to enhanced charge transfer, as disclosed by electrochemical impedance spectroscopy studies. Electrochemical stability studies revealed that Pt/TiO2-x exhibited a higher stability with a lower current decay rate than commercial Pt/C, which can be attributed to the stable oxide support and strong interaction between Pt nanoparticles and the oxygen-deficient TiO2-x support. © 2014 Dalian Institute of Chemical Physics, the Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  • 2014 • 167
    Oxygen transport through supported Ba0.5Sr0.5Co 0.8Fe0.2O3-δ membranes
    Niehoff, P. and Baumann, S. and Schulze-Küppers, F. and Bradley, R.S. and Shapiro, I. and Meulenberg, W.A. and Withers, P.J. and Vaßen, R.
    SEPARATION AND PURIFICATION TECHNOLOGY. Volume: 121 (2014)
    view abstract10.1016/j.seppur.2013.07.002

    The oxygen transport through supported membranes made of Ba 0.5Sr0.5Co0.8Fe0.2O 3-δ is investigated. For this, disc shaped membranes were manufactured by means of tape casting, consisting of a gastight layer with varying thickness (0.9 mm-20 μm) and a porous support with varying porosity (34%/41%). The sample's microstructure was analyzed using SEM and X-ray computer tomography and by this means characteristic values (i.e., porosity, tortuosity, and specific surface area) were determined. A modeling concept was developed based on literature approaches, extending the Wagner equation for bulk transfer with a geometrical factor β for the characteristic thickness accounting active supports and different surface microstructures. The results were compared with permeation measurements of samples under varying operation conditions (i.e., sweep flow rate, and feed gas). As a result, good agreement between model and measurement in case of a constant porosity is found for characteristic thicknesses Lc as reported in literature. However, calculations with varying porosity show indistinguishable results, indicating an underestimate of the geometric factor versus the influence of the characteristic thickness L c. Also, significant limitations of the oxygen permeation due to surface exchange and concentration polarization in the support is shown. © 2013 Elsevier B.V. All rights reserved.

  • 2014 • 166
    Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation
    Masa, J. and Batchelor-McAuley, C. and Schuhmann, W. and Compton, R.G.
    NANO RESEARCH. Volume: 7 (2014)
    view abstract10.1007/s12274-013-0372-0

    The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate constant kapp o, equal to the true rate constant k o describing the redox reaction of interest on the surface of the nanoparticles and the ratio, ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I -1 versus ω -1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof kapp o, not k o. Thus, for ψ > 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ < 1 the deduced electrochemical rate constant will be less than k o. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts. [Figure not available: see fulltext.] © 2014 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  • 2014 • 165
    Oxygen reduction at a Cu-modified Pt(111) model electrocatalyst in contact with nafion polymer
    Tymoczko, J. and Calle-Vallejo, F. and Colic, V. and Koper, M.T.M. and Schuhmann, W. and Bandarenka, A.S.
    ACS CATALYSIS. Volume: 4 (2014)
    view abstract10.1021/cs501037y

    The effect of Nafion on the performance of a model Cu-modified Pt(111) electrocatalyst has been investigated using electrochemical techniques and density functional theory calculations. In this work, we demonstrate that Cu subsurface alloying not only increases the activity of model Pt(111) electrodes toward the oxygen reduction reaction (ORR) but also largely prevents catalyst poisoning by electrolyte components relevant for polymer electrolyte membrane fuel cell applications. Our results indicate that specific adsorption of (bi)sulfates and sulfonates (present in Nafion membranes) on the Cu-modified Pt(111) electrocatalyst is gradually suppressed, which implies that the ORR activity in 0.05 M H2SO4 electrolyte drastically increases, with a change in the corresponding pseudo-half-wave potential of ∼93 mV. Importantly, the Cu-modified Pt(111) electrocatalyst in contact with Nafion polymer shows an activity as high as that in the absence of this polymer in perchloric acid media. © 2014 American Chemical Society.

  • 2014 • 164
    Potential-resolved dissolution of Pt-Cu: A thin-film material library study
    Schuppert, A.K. and Savan, A. and Ludwig, Al. and Mayrhofer, K.J.J.
    ELECTROCHIMICA ACTA. Volume: 144 (2014)
    view abstract10.1016/j.electacta.2014.07.113

    Within the search for new catalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells, alloys of Pt with other transition metals are of great interest due to their increased specific and especially mass activity. However, the drawback of these catalysts is their reduced stability due to the dissolution of the less-noble metal from the alloy. To resolve the potential dependence of these dissolution processes, we investigate a material library of Pt-Cu thin-film alloys with compositions ranging from 0 at% Cu up to 60 at% Cu. Utilizing our combinatorial scanning flow cell technique coupled to a mass spectrometer several aspects of dissolution are revealed. The onset of relevant Cu dissolution was found to be around 0.9 VRHE, independent of the composition. Although this is well below the onset potential of the Pt dissolution (1.15 VRHE), the two dissolution processes are clearly correlated, especially when the surface is already depleted of Cu. In contrast to Pt, however, Cu preferentially dissolves during anodic polarization rather than during the cathodic sweep. Additionally, at Cu compositions above the parting limit between 50 and 57 at% Cu a breakdown of passivity and massive Cu dissolution leads to porosity formation. The critical potential for the alloy with 57 at% Cu was detected around 1.3 VRHE, which is above the stability potential of Pt. While the absolute activity during the porosity formation increases due to the formation of more active sites in the pores, the specific activity decays to a value close to pure Pt. © 2014 The Authors.

  • 2014 • 163
    Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles
    Wang, Y. and Laborda, E. and Tschulik, K. and Damm, C. and Molina, A. and Compton, R.G.
    NANOSCALE. Volume: 6 (2014)
    view abstract10.1039/c4nr03850a

    The electron transfer kinetics associated with both the reduction of oxygen and of protons to form hydrogen at gold nanoparticles are shown to display strong retardation when studied at citrate capped ultra small (2 nm) gold nanoparticles. Negative nanocatalysis in the hydrogen evolution reaction (HER) is reported for the first time. This journal is © the Partner Organisations 2014.

  • 2014 • 162
    Evaluation of Perovskites as Electrocatalysts for the Oxygen Evolution Reaction
    Rincõn, R.A. and Ventosa, E. and Tietz, F. and Masa, J. and Seisel, S. and Kuznetsov, V. and Schuhmann, W.
    CHEMPHYSCHEM. Volume: 15 (2014)
    view abstract10.1002/cphc.201402137

    The oxygen evolution reaction (OER) is an enabling process for technologies in the area of energy conversion and storage, but its slow kinetics limits its efficiency. We performed an electrochemical evaluation of 14 different perovskites of variable composition and stoichiometry as OER electrocatalysts in alkaline media. We particularly focused on improved methods for a reliable comparison of catalyst activity. From initial electrochemical results we selected the most active samples for further optimization of electrode preparation and testing. An inverted cell configuration facilitated gas bubble detachment and thus minimized blockage of the active surface area. We describe parameters, such as the presence of specific cations, stoichiometry, and conductivity, that are important for obtaining electroactive perovskites for OER. Conductive additives enhanced the current and decreased the apparent overpotential of OER for one of the most active samples (La0.58Sr0.4Fe0.8Co0.2O3). Low-cost electrocatalysts: A family of perovskites has been studied as new electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Electrochemical characterization demonstrates the promise of this type of materials for the OER, and the use of conductive additives proves useful for obtaining higher current outputs. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 161
    Adhesion of thin CVD films on pulsed plasma pre-treated polypropylene
    Behm, H. and Bahroun, K. and Bahre, H. and Kirchheim, D. and Mitschker, F. and Bibinov, N. and Böke, M. and Dahlmann, R. and Awakowicz, P. and Hopmann, C. and Winter, J.
    PLASMA PROCESSES AND POLYMERS. Volume: 11 (2014)
    view abstract10.1002/ppap.201300128

    The adhesion of thin CVD films on polyolefins is often critical due to the low surface free energy of the polymers. In this study, injection moulded PP samples are produced and investigated. The samples are treated in very well-characterized pulsed plasmas before a HMDSO-based coating is applied. The resulting bond strength is analyzed using pull-off tests. The fractured interfaces are characterized with XPS. Oxygen and argon plasma pre-treatments of the PP samples result in a bond strength improvement by a factor of about 2. Comparing oxygen and argon pre-treatments at equal ion fluences to the surface, it can be shown that the bond strength between CVD-coating and polymer is similar. The influence of well-defined argon and oxygen pre-treatment plasmas on the adhesion of silicon organic CVD films (SiOCH) on polypropylene (PP) is investigated. Very short pre-treatment times result in an increase in bond strength by a factor of 2. Measurements show a dependency of the ion fluence on the surface on the bond strength between CVD film and PP in the region of best adhesion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 160
    Oxidative coupling of methane: Catalytic behaviour assessment via comprehensive microkinetic modelling
    Alexiadis, V.I. and Thybaut, J.W. and Kechagiopoulos, P.N. and Chaar, M. and Van Veen, A.C. and Muhler, M. and Marin, G.B.
    APPLIED CATALYSIS B: ENVIRONMENTAL. Volume: 150-151 (2014)
    view abstract10.1016/j.apcatb.2013.12.043

    A comprehensive microkinetic model, including catalyst descriptors, that accounts for thermal, homogeneous and catalytic, heterogeneous reaction steps in the oxidative coupling of methane has been used in the assessment of kinetic data acquired on different catalysts. The applicability of the model was extended from alkali magnesia catalysts represented by Li/MgO and Sn-Li/MgO, to a new class of materials, namely alkaline earth-promoted lanthana catalysts, represented by Sr/La2O3. To simulate adequately the large experimental dataset, acquired with the latter catalyst, the surface reaction network of the microkinetic model was expanded. The resulting model succeeded in adequately simulating the C2, that is, ethane and ethene, production, both individually and as a lump during regression. It was found that the activity of Sr/La2O3, in terms of methane conversion, is 33 and five times higher than that of Li/MgO and Sn-Li/MgO, respectively. This is attributed mainly to the higher stability of adsorbed hydroxyl, the higher stability of adsorbed oxygen, and the higher active density of Sr/La2O3. The selectivity toward C2 products was found to depend on the methyl radical sticking coefficient and the stability of the adsorbed oxygen and was the highest on the Sn-promoted LiMgO catalyst, that is, 70% at about 5% methane conversion at 1023K, 190kPa, and inlet molar CH4/O2 ratio of 4. © 2014 Elsevier B.V.

  • 2014 • 159
    A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage
    Plumeré, N. and Rüdiger, O. and Oughli, A.A. and Williams, R. and Vivekananthan, J. and Pöller, S. and Schuhmann, W. and Lubitz, W.
    NATURE CHEMISTRY. Volume: 6 (2014)
    view abstract10.1038/nchem.2022

    Hydrogenases are nature's efficient catalysts for both the generation of energy via oxidation of molecular hydrogen and the production of hydrogen via the reduction of protons. However, their O2 sensitivity and deactivation at high potential limit their applications in practical devices, such as fuel cells. Here, we show that the integration of an O2 -sensitive hydrogenase into a specifically designed viologen-based redox polymer protects the enzyme from O2 damage and high-potential deactivation. Electron transfer between the polymer-bound viologen moieties controls the potential applied to the active site of the hydrogenase and thus insulates the enzyme from excessive oxidative stress. Under catalytic turnover, electrons provided from the hydrogen oxidation reaction induce viologen-catalysed O 2 reduction at the polymer surface, thus providing self-activated protection from O2. The advantages of this tandem protection are demonstrated using a single-compartment biofuel cell based on an O2 -sensitive hydrogenase and H2/O2 mixed feed under anode-limiting conditions.

  • 2014 • 158
    Possibilities to improve the antioxidative capacity of beer by optimized hopping regimes
    Kunz, T. and Frenzel, J. and Wietstock, P.C. and Methner, F.-J.
    JOURNAL OF THE INSTITUTE OF BREWING. Volume: 120 (2014)
    view abstract10.1002/jib.162

    Different hopping regimes were evaluated to investigate the effect on the oxidative stability of wort and beer. Compared with a single hop dosage at the beginning of wort boil, it was possible to increase the concentration of α-acids in pitching wort and beer by applying incremental hop dosage, dry hopping or the use of a pre-isomerized hop product in combination with an α-acid extract, which concomitantly resulted in lower iron concentrations and an enhanced flavour stability as indicated by standard wort and beer analyses, atomic absorption spectroscopy, electron spin resonance spectroscopy and sensory analysis of fresh and force-aged beers. The functional principle of hop dosage variations is explained by saving of α-acids throughout the wort production process, which yields an increased formation and precipitation of pro-oxidative acting transition metal ions (e.g. Fe) in α-acid-complexes during the whirlpool rest and fermentation. Consequently, fewer reactive oxygen species are generated. Additional laboratory trials simulating wort cooling and beer storage in buffered model solutions proved that un-isomerized α-acids are strong iron chelators and confirmed the functional principle of the applied hopping regimes. Negative effects of higher α-acid contents on fermentation performance and depletion of the zinc concentration, which is an essential nutrient for yeast, could be excluded. © 2014 The Institute of Brewing & Distilling.

  • 2014 • 157
    Low temperature Hydrogen Reduction of High Surface Area Anatase and Anatase/β-TiO2 for High-Charging-Rate Batteries
    Ventosa, E. and Tymoczko, A. and Xie, K. and Xia, W. and Muhler, M. and Schuhmann, W.
    CHEMSUSCHEM. Volume: 7 (2014)
    view abstract10.1002/cssc.201402279

    There are several strategies to improve the electrochemical performance of TiO2 as negative electrode material for Li-ion batteries. Introducing oxygen vacancies through hydrogen reduction leads to an enhancement in electrical conductivity. However, this strategy does not improve the low lithium-ion mobility. Herein, we show that by decreasing the temperature of hydrogen annealing the improved lithium-ion mobility of high-surface-area TiO2 and β-TiO2 can be combined with the enhanced electrical conductivity of oxygen deficiencies. Annealing at only 275–300 °C in pure hydrogen atmosphere successfully creates oxygen vacancies in TiO2, as confirmed by UV/Vis spectroscopy, whereas the temperature is low enough to maintain a high specific surface area and prevent β-to-anatase phase transformation. The hydrogen reduction of high-surface-area anatase or anatase/β-TiO2 at these temperatures leads to improvements in the performance, achieving charge capacities of 142 or 152 mAh g−1 at 10C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  • 2014 • 156
    The strong catalytic effect of Pb(II) on the oxygen reduction reaction on 5 nm gold nanoparticles
    Wang, Y. and Laborda, E. and Plowman, B.J. and Tschulik, K. and Ward, K.R. and Palgrave, R.G. and Damm, C. and Compton, R.G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS. Volume: 16 (2014)
    view abstract10.1039/c3cp55306j

    Citrate-capped gold nanoparticles (AuNPs) of 5 nm in diameter are synthesized via wet chemistry and deposited on a glassy carbon electrode through electrophoresis. The kinetics of the oxygen reduction reaction (ORR) on the modified electrode is determined quantitatively in oxygen-saturated 0.5 M sulphuric acid solution by modelling the cathode as an array of interactive nanoelectrodes. Quantitative analysis of the cyclic voltammetry shows that no apparent ORR electrocatalysis takes place, the kinetics on AuNPs being effectively the same as on bulk gold. Contrasting with the above, a strong ORR catalysis is found when Pb2+ is added to the oxygen saturated solution or when the modified electrode is cycled in lead alkaline solution such that lead dioxide is repeatedly electrodeposited and stripped off on the nanoparticles. In both cases, the underpotential deposition of lead on the gold nanoparticles is found to be related to the catalysis. This journal is © the Owner Societies 2014.

  • 2014 • 155
    Reaction products in the combustion of the high energy density storage material lithium with carbon dioxide and nitrogen
    Kellermann, R. and Taroata, D. and Schiemann, M. and Eckert, H. and Fischer, P. and Scherer, V. and Hock, R. and Schmid, G.
    MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS. Volume: 1644 (2014)
    view abstract10.1557/opl.2014.314

    In this work, electrochemically recyclable lithium is analyzed as high energy density, large scale storage material for stranded renewable energy in a closed loop. The strongly exothermic reaction of lithium with carbon dioxide (CO2) yields thermal energy directly comparable to the combustion of coal or methane in an oxygen containing atmosphere. The thermal level of the reaction is sufficient for re-electrification in a thermal power plant compatible process. The reaction of single lithium particles, avoiding particle-particle interactions, is compared to the combustion of atomized lithium spray in a CO2 containing atmosphere. Particle temperatures of up to 4000K were found for the reaction of single lithium particles in a CO2, nitrogen (N2), oxygen (O2) and steam gas mixture. Furthermore the combustion of atomized lithium spray in both dry CO2 atmosphere and CO2/steam gas mixture was analyzed. The identified solid reaction products are lithium carbonate, lithium oxide and lithium hydroxide. The formation of carbon monoxide (CO) as gaseous reaction product is demonstrated. Carbon monoxide is a valuable by-product, which could be converted to methanol or gasoline using hydrogen. Copyright © 2014 Materials Research Society.

  • 2014 • 154
    MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes
    Masa, J. and Xia, W. and Sinev, I. and Zhao, A. and Sun, Z. and Grützke, S. and Weide, P. and Muhler, M. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 53 (2014)
    view abstract10.1002/anie.201402710

    Reversible interconversion of water into H2 and O2, and the recombination of H2 and O2 to H2O thereby harnessing the energy of the reaction provides a completely green cycle for sustainable energy conversion and storage. The realization of this goal is however hampered by the lack of efficient catalysts for water splitting and oxygen reduction. We report exceptionally active bifunctional catalysts for oxygen electrodes comprising Mn3O4 and Co 3O4 nanoparticles embedded in nitrogen-doped carbon, obtained by selective pyrolysis and subsequent mild calcination of manganese and cobalt N4 macrocyclic complexes. Intimate interaction was observed between the metals and nitrogen suggesting residual M-Nx coordination in the catalysts. The catalysts afford remarkably lower reversible overpotentials in KOH (0.1M) than those for RuO2, IrO2, Pt, NiO, Mn3O4, and Co3O4, thus placing them among the best non-precious-metal catalysts for reversible oxygen electrodes reported to date. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 153
    Rational design of the electrode morphology for oxygen evolution-enhancing the performance for catalytic water oxidation
    Zeradjanin, A.R. and Topalov, A.A. and Van Overmeere, Q. and Cherevko, S. and Chen, X. and Ventosa, E. and Schuhmann, W. and Mayrhofer, K.J.J.
    RSC ADVANCES. Volume: 4 (2014)
    view abstract10.1039/c3ra45998e

    The fundamental understanding of the electrode/electrolyte interface is of pivotal importance for the efficient electrochemical conversion and storage of electrical energy. However, the reasons for the low rate of electrocatalytic oxygen evolution and issues of long-term material stability, which are central constraints for attaining desirable efficiency for sustainable technologies like water electrolysis or electrochemical CO2 reduction, are still not completely resolved. While a lot of attention has been directed towards the search for new materials with unique (electro)catalytic properties, experimental results accumulated during the last four decades and prediction from models suggest that RuO2 possesses superior activity for oxygen evolution under acidic conditions. Considering that RuO2 is a material of choice, we show that tailoring the surface morphology on the meso- and macroscale has great potential for the improvement of the efficiency of this gas evolving reaction. Advanced analytical tools have been utilized for the combined investigation of both activity and stability. Namely, the potential dependent frequencies of gas-bubble evolution, an indicator for the activity of the electrode, were acquired by scanning electrochemical microscopy (SECM), while the dissolution of RuO2 was monitored using a micro electrochemical scanning flow cell combined with an inductively coupled plasma mass spectrometer (SFC-ICP-MS). The obtained fundamental insights will aid improving the design and thus performance of electrode materials for water oxidation. © 2014 The Royal Society of Chemistry.

  • 2014 • 152
    Nanostructured Er2O3 thin films grown by metalorganic chemical vapour deposition
    Xu, K. and Dang, V.-S. and Ney, A. and De Los Arcos, T. and Devi, A.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY. Volume: 14 (2014)
    view abstract10.1166/jnn.2014.8848

    Metalorganic chemical vapor deposition (MOCVD) of nanostructured Er 2O3 thin films was performed using the Er-tris-guanidinate precursor [Er(DPDMG)3] (DPDMG = diisopropyl-2- dimethylamidoguanidinato) as the Er source and oxygen. Film deposition was carried out on Si(100) and quartz glass substrates and the process parameters namely temperature, pressure and oxygen flow rate were varied. The resulting thin films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) for investigating the crystallinity and morphology, respectively. The chemical composition of the film was investigated by X-ray photoelectron spectroscopy (XPS) measurements. Transmittance and absorption spectra of the 600 °C film grown on glass substrates were performed by UV-vis measurements revealing more than 80% transmittance. The potential of Er2O3 thin films as gate dielectrics was verified by carrying out capacitance-voltage (C-V ) and current-voltage (I-V ) measurements. Dielectric constants estimated from the accumulation capacitance were found to be in the range of 10-12 in AC frequencies of 1 MHz down to 10 kHz and the leakage current of the order of 2×10-8 A/cm2 at the applied field of 1 MV cm-1 was measured for films deposited under optimised process conditions. The low leakage current and high dielectric constant implies good quality of the Er2O3 layers relevant for high-k applications. These layers were found to be paramagnetic with a slightly reduced magnetic moment of the Er3+ ions. Copyright © 2014 American Scientific Publishers All rights reserved.

  • 2014 • 151
    Electrochemical nanoprobes for single-cell analysis
    Actis, P. and Tokar, S. and Clausmeyer, J. and Babakinejad, B. and Mikhaleva, S. and Cornut, R. and Takahashi, Y. and López Córdoba, A. and Novak, P. and Shevchuck, A.I. and Dougan, J.A. and Kazarian, S.G. and Gorelkin, P.V. and Erofeev, A.S. and Yaminsky, I.V. and Unwin, P.R. and Schuhmann, W. and Klenerman, D. and Rusakov, D.A. and Sviderskaya, E.V. and Korchev, Y.E.
    ACS NANO. Volume: 8 (2014)
    view abstract10.1021/nn405612q

    The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells. © 2013 American Chemical Society.

  • 2014 • 150
    Interface effects in NaAlH4-carbon nanocomposites for hydrogen storage
    Gao, J. and Ngene, P. and Herrich, M. and Xia, W. and Gutfleisch, O. and Muhler, M. and De Jong, K.P. and De Jongh, P.E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. Volume: 39 (2014)
    view abstract10.1016/j.ijhydene.2014.03.188

    For practical solid-state hydrogen storage, reversibility under mild conditions is crucial. Complex metal hydrides such as NaAlH4 and LiBH4 have attractive hydrogen contents. However, hydrogen release and especially uptake after desorption are sluggish and require high temperatures and pressures. Kinetics can be greatly enhanced by nanostructuring, for instance by confining metal hydrides in a porous carbon scaffold. We present for a detailed study of the impact of the nature of the carbon-metal hydride interface on the hydrogen storage properties. Nanostructures were prepared by melt infiltration of either NaAlH4 or LiBH4 into a carbon scaffold, of which the surface had been modified, varying from H-terminated to oxidized (up to 4.4 O/nm2). It has been suggested that the chemical and electronic properties of the carbon/metal hydride interface can have a large influence on hydrogen storage properties. However, no significant impact on the first H2 release temperatures was found. In contrast, the surface properties of the carbon played a major role in determining the reversible hydrogen storage capacity. Only a part of the oxygen-containing groups reacted with hydrides during melt infiltration, but further reaction during cycling led to significant losses, with reversible hydrogen storage capacity loss up to 40% for surface oxidized carbon. However, if the carbon surface had been hydrogen terminated, ∼6 wt% with respect to the NaAlH4 weight was released in the second cycle, corresponding to 95% reversibility. This clearly shows that control over the nature and amount of surface groups offers a strategy to achieve fully reversible hydrogen storage in complex metal hydride-carbon nanocomposites. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  • 2014 • 149
    Microelectrochemical visualization of oxygen consumption of single living cells
    Nebel, M. and Grützke, S. and Diab, N. and Schulte, A. and Schuhmann, W.
    FARADAY DISCUSSIONS. Volume: 164 (2014)
    view abstract10.1039/c3fd00011g

    The detection of cellular respiration activity is important for the assessment of the status of a biological cell. Due to its non-invasive character and high spatial resolution scanning electrochemical microscopy (SECM) is a powerful tool for single cell measurements. Common limitations of respiration studies performed by SECM are discussed and strategies provided to further adapt SECM detection schemes to the specific requirements for the investigation of single cell respiration. In particular the combination of a potential pulse technique in the redox competition mode of SECM with a shearforce-based constant-distance positioning of the SECM tip is proposed for characterising the impact of the tip reaction during SECM imaging. The adjustment of the driving force of the tip reaction and the selection of the time for data acquisition after applying the potential pulse allowed a successful visualization of cell respiration activity. © 2013 The Royal Society of Chemistry.

  • 2014 • 148
    Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting
    Zhao, A. and Masa, J. and Xia, W. and Maljusch, A. and Willinger, M.-G. and Clavel, G. and Xie, K. and Schlögl, R. and Schuhmann, W. and Muhler, M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 136 (2014)
    view abstract10.1021/ja502532y

    The notorious instability of non-precious-metal catalysts for oxygen reduction and evolution is by far the single unresolved impediment for their practical applications. We have designed highly stable and active bifunctional catalysts for reversible oxygen electrodes by oxidative thermal scission, where we concurrently rupture nitrogen-doped carbon nanotubes and oxidize Co and Mn nanoparticles buried inside them to form spinel Mn-Co oxide nanoparticles partially embedded in the nanotubes. Impressively high dual activity for oxygen reduction and evolution is achieved using these catalysts, surpassing those of Pt/C, RuO2, and IrO2 and thus raising the prospect of functional low-cost, non-precious-metal bifunctional catalysts in metal-air batteries and reversible fuel cells, among others, for a sustainable and green energy future. © 2014 American Chemical Society.

  • 2014 • 147
    Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings
    Bahroun, K. and Behm, H. and Mitschker, F. and Awakowicz, P. and Dahlmann, R. and Hopmann, C.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 47 (2014)
    view abstract10.1088/0022-3727/47/1/015201

    Due to their macromolecular structure, plastics are limited in their scope of application whenever high barrier functionality against oxygen and water vapour permeation is required. One solution is the deposition of thin silicon oxide coatings in plasma-enhanced chemical vapour deposition (PECVD) processes. A way to improve performance of barrier coatings is the use of multilayer structures built from dyad layers, which combine an inorganic barrier layer and an organic intermediate layer. In order to investigate the influence of type and number of dyads on the barrier performance of coated 23 m PET films, different dyad setups are chosen. The setups include SiOCH interlayers and SiO x-barrier layers deposited using the precursor hexamethyldisiloxane (HMDSO). A single reactor setup driven in pulsed microwave plasma (MW) mode as well as capacitively coupled plasma (CCP) mode is chosen. In this paper the effects of a variation in intermediate layer recipe and stacking order using dyad setups on the oxygen barrier properties of multilayer coatings are discussed with regard to the chemical structure, morphology and activation energy of the permeation process. Changes in surface nano-morphology of intermediate layers have a strong impact on the barrier properties of subsequent glass-like coatings. Even a complete failure of the barrier is observed. Therefore, when depositing multilayer barrier coatings, stacking order has to be considered. © 2014 IOP Publishing Ltd.

  • 2014 • 146
    First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ'-strengthened Co-Al-W superalloys
    Klein, L. and Zendegani, A. and Palumbo, M. and Fries, S.G. and Virtanen, S.
    CORROSION SCIENCE. Volume: 89 (2014)
    view abstract10.1016/j.corsci.2014.08.016

    In the present work, thermodynamic modelling of the high temperature oxidation behaviour of a γ'-strengthened Co-base superalloy is presented. The ternary Co-9Al-9W alloy (values in at%) was isothermally oxidised for 500h at 800 and 900°C in air. Results reveal that the calculated oxide layer sequence (Thermo-Calc, TCNI6) is in good agreement with the formed oxide scales on the alloy surface. Furthermore, prediction of the influence of oxygen partial pressure on Al2O3 formation is presented. The modelling results indicate pathways for alloy development or possible pre-oxidation surface treatments for improved oxidation resistance of the material. © 2014 Elsevier Ltd.

  • 2014 • 145
    Atomic layer deposition of TiO2 and ZrO2 thin films using heteroleptic guanidinate precursors
    Kaipio, M. and Blanquart, T. and Banerjee, M. and Xu, K. and Niinistö, J. and Longo, V. and Mizohata, K. and Devi, A. and Ritala, M. and Leskelä, M.
    CHEMICAL VAPOR DEPOSITION. Volume: 20 (2014)
    view abstract10.1002/cvde.201407115

    In this study the atomic layer deposition (ALD) of TiO2 and ZrO2 using two heteroleptic amido-guanidinate precursors, [Ti(NEtMe)3(guan-NEtMe)] and [Zr(NEtMe)3(guan-NEtMe)], together with water or ozone as oxygen sources, are investigated. All processes exhibit self-limiting growth at a deposition temperature of 275°C. The zirconium precursor especially gives high growth rates (0.8/1.0Å per cycle with H2O/O3). The films are also relatively smooth, as determined by atomic force microscopy (AFM). The composition of the films is examined using X-ray photoelectron spectroscopy (XPS) and time of flight elastic recoil detection analysis (TOF-ERDA). When using ozone as the oxygen source the films present very high purity. The results are compared and discussed with respect to earlier studies on guanidinate, as well as homoleptic amido precursors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 144
    Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction
    Chen, X. and Si, C. and Gao, Y. and Frenzel, J. and Sun, J. and Eggeler, G. and Zhang, Z.
    JOURNAL OF POWER SOURCES. Volume: 273 (2014)
    view abstract10.1016/j.jpowsour.2014.09.076

    Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium (np-PtRuCuOsIr) electrocatalyst has been facilely fabricated by chemical dealloying of mechanically alloyed AlCuPtRuOsIr precursor. The np-PtRuCuOsIr catalyst exhibits a typical three-dimensional bi-continuous interpenetrating ligament/channel structure with a length scale of ∼2.5 nm. The np-PtRuCuOsIr catalyst reaches a higher level in the mass activity (857.5 mA mgPt-1) and specific activity (3.0 mA cm-2) towards methanol oxidation compared to the commercial PtC catalyst (229.5 mA mgPt-1 and 0.5 mA cm-2 respectively). Moreover, the CO stripping peak of np-PtRuCuOsIr is 0.54 V (vs. SCE), 130 mV negative shift in comparison with the commercial PtC (0.67 V vs. SCE). The half-wave potential of np-PtRuCuOsIr is 0.900 V vs. RHE, 36 mV positive compared with that of the commercial PtC (0.864 V vs. RHE). The np-PtRuCuOsIr catalyst also shows 1.8 and 3.8 times enhancement in the mass and specific activity towards oxygen reduction than the commercial PtC. Moreover, the np-PtRuCuOsIr alloy exhibits superior oxygen reduction activities even after 15 K cycles, indicating its excellent long-term stability. The present np-PtRuCuOsIr can act as a promising candidate for the electrocatalyst in direct methanol fuel cells (DMFCs). © 2014 Elsevier B.V. All rights reserved.

  • 2014 • 143
    CO 2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes
    Chew, L.M. and Ruland, H. and Schulte, H.J. and Xia, W. and Muhler, M.
    JOURNAL OF CHEMICAL SCIENCES. Volume: 126 (2014)
    view abstract10.1007/s12039-014-0591-2

    Hydrogenation of CO2 to hydrocarbons over iron nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes was studied in a fixed-bed U-tube reactor at 25 bar with a H2:CO2 ratio of 3. Conversion of CO2 was approximately 35% yielding C 1-C5 products at 360°C with methane and CO as major products. The CO2 equilibrium conversion for temperatures in the range of 320° to 420°C was analysed by using CHEMCAD simulation software. Comparison between experimental and simulated degrees of CO 2 conversion shows that reverse water gas shift equilibrium had been achieved in the investigated temperature range and that less than 47% of CO 2 can be converted to CO at 420°C. © 2014 Indian Academy of Sciences.

  • 2014 • 142
    Interaction of cobalt nanoparticles with oxygen- and nitrogen- functionalized carbon nanotubes and impact on nitrobenzene hydrogenation catalysis
    Chen, P. and Yang, F. and Kostka, A. and Xia, W.
    ACS CATALYSIS. Volume: 4 (2014)
    view abstract10.1021/cs500173t

    The type and the amount of functional groups on the surface of carbon nanotubes (CNTs) were tuned to improve the activity of supported Co nanoparticles in hydrogenation catalysis. Surface nitrogen species on CNTs significantly promoted the decomposition of the cobalt precursor and the reduction of cobalt oxide, and improved the resistance of metallic Co against oxidation in ambient atmosphere. In the selective hydrogenation of nitrobenzene in the gas phase, Co supported on CNTs with the highest surface nitrogen content showed the highest activity, which is ascribed to the higher reducibility and the lower oxidation state of the Co nanoparticles under reaction conditions. For Co nanoparticles supported on CNTs with a smaller amount of surface nitrogen groups, a repeated reduction at 350 °C was essential to achieve a comparable high catalytic activity reaching 90% conversion at 250 °C, pointing to the importance of nitrogen species for the supported Co nanoparticles in nitrobenzene hydrogenation. © 2014 American Chemical Society.

  • 2014 • 141
    Composition-Dependent Oxygen Reduction Activity and Stability of Pt-Cu Thin Films
    Schuppert, A.K. and Topalov, A.A. and Savan, A. and Ludwig, Al. and Mayrhofer, K.J.J.
    CHEMELECTROCHEM. Volume: 1 (2014)
    view abstract10.1002/celc.201300078

    Catalyst considerations: Pt-Cu alloys are prepared as a thin-film material library with a composition gradient. By using a scanning flow cell coupled to on-line mass spectrometry, this library can be screened over to measure the activity towards the oxygen reduction reaction as well as the time-resolved dissolution of both alloy components in parallel. This results in comprehensive insights into the composition-dependent performance of the Pt-Cu system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2014 • 140
    Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-Nx/C groups
    Rincón, R.A. and Masa, J. and Mehrpour, S. and Tietz, F. and Schuhmann, W.
    CHEMICAL COMMUNICATIONS. Volume: 50 (2014)
    view abstract10.1039/c4cc06446a

    The incorporation of Fe-Nx/C moieties into perovskites remarkably activates them for the oxygen reduction reaction (ORR) and also leads to notable improvement of their activity towards the oxygen evolution reaction (OER) thus presenting a new route for realizing high performance, low cost bifunctional catalysts for reversible oxygen electrodes. This journal is © the Partner Organisations 2014.

  • 2014 • 139
    Characterisation of non-uniform functional surfaces: Towards linking basic surface properties with electrocatalytic activity
    Maljusch, A. and Henry, J.B. and Tymoczko, J. and Bandarenka, A.S. and Schuhmann, W.
    RSC ADVANCES. Volume: 4 (2014)
    view abstract10.1039/c3ra45845h

    Functional materials, particularly heterogeneous catalysts, are often non-uniform at a microscopic level making their detailed characterisation extremely complex. This complexity inhibits the design and implementation of novel functional materials as such characterisation is a key to understanding interfaces for heterogeneous catalysis. We demonstrate that a combination of Scanning Kelvin Probe (SKP) and Scanning Electrochemical Microscopy (SECM) experiments made over the same sample surface using an integrated SKP-SECM system provides a powerful and robust tool to link basic surface properties with the observed electrocatalytic activity. As the SKP-response can be accurately assessed using modern quantum chemical approaches to benchmark analytical signals for different surface structures with varying compositions, application of an integrated SKP-SECM system can offer valuable insight into the origin of the observed electrocatalytic activity. As model objects, we used Pt(111)-like thin films modified with sub-monolayer and monolayer amounts of Cu atoms located at the electrode surface and in the sub-surface region. The exact position of the Cu atoms relative to the topmost Pt layer greatly affects basic surface properties and governs the electrocatalytic activity of the surface towards various reactions, i.e. the oxygen reduction reaction. SKP-SECM appeared to be a very sensitive tool to monitor those changes as a function of the spatial coordinates. © 2014 The Royal Society of Chemistry.

  • 2014 • 138
    Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films
    Mei, B. and Seger, B. and Pedersen, T. and Malizia, M. and Hansen, O. and Chorkendorff, I. and Vesborg, P.C.K.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS. Volume: 5 (2014)
    view abstract10.1021/jz500865g

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38.6 mW/cm2 simulated sunlight irradiation (λ > 635 nm, AM 1.5G) and measurements with quartz crystal microbalances. Films exceeding a thickness of 4 nm were shown to be highly active though metastable due to an amorphous character. By contrast, 2 nm IrOx films were stable, enabling OER at a current density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide the necessary overpotential for OER at realistic device current, but also harvest ∼100 mV of free energy (voltage) which makes them among the best-performing Si-based photoanodes in low-pH media. © 2014 American Chemical Society.

  • 2014 • 137
    Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes
    Mei, B. and Permyakova, A.A. and Frydendal, R. and Bae, D. and Pedersen, T. and Malacrida, P. and Hansen, O. and Stephens, I.E.L. and Vesborg, P.C.K. and Seger, B. and Chorkendorff, I.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS. Volume: 5 (2014)
    view abstract10.1021/jz501872k

    Sputter deposition of 50 nm thick NiO films on p+-n-Si and subsequent treatment in an Fe-containing electrolyte yielded highly transparent photoanodes capable of water oxidation (OER) in alkaline media (1 M KOH) with high efficiency and stability. The Fe treatment of NiO thin films enabled Si-based photoanode assemblies to obtain a current density of 10 mA/cm2 (requirement for >10% efficient devices) at 1.15 V versus RHE (reversible hydrogen electrode) under red-light (38.6 mW/cm2) irradiation. Thus, the photoanodes were harvesting ∼80 mV of free energy (voltage), which places them among the best-performing Si-based photoanodes in alkaline media. The stability was proven by chronoamperometry at 1.3 V versus RHE for 300 h. Furthermore, measurements with electrochemical quartz crystal microbalances coupled with ICP-MS showed minor corrosion under dark operation. Extrapolation of the corrosion rate showed stability for more than 2000 days of continuous operation. Therefore, protection by Fe-treated NiO films is a promising strategy to achieve highly efficient and stable photoanodes. © 2014 American Chemical Society.

  • 2014 • 136
    Revealing onset potentials using electrochemical microscopy to assess the catalytic activity of gas-evolving electrodes
    Maljusch, A. and Ventosa, E. and Rincón, R.A. and Bandarenka, A.S. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 38 (2014)
    view abstract10.1016/j.elecom.2013.11.024

    Determination of the so-called onset potentials, i.e. the lowest (for the anodic reactions) or the highest (for the cathodic reactions) potentials at which a reaction product is formed at a given electrode and at defined conditions, is very important for the evaluation of the catalytic activity and even more for the comparison of different catalysts. We present an approach for the determination of the onset potentials based on scanning electrochemical microscopy (SECM) using the "substrate generation-tip collection" mode. In the proposed method, the potential applied to the catalyst sample is changed stepwise. A micro-electrode serving as SECM tip is positioned in known close proximity to the catalyst surface and is used to detect the onset of the formation of the product of the catalytic reaction, specifically gas generation at the sample surface. The oxygen evolution reaction (OER) at model RuO 2 and perovskite catalyst surfaces is used to evaluate the approach. The suggested method is supposed to provide a clearer and sensitive means for the detection of the onset potentials of electrolytic gas evolution reactions as compared to conventional procedures which mainly use cyclic voltammetry on stationary or rotating (ring) disk electrodes. Moreover, the detection of the reaction product at the SECM tip allows distinguishing between parasitic reactions at the catalyst surface and the true formation of the anticipated reaction product. © 2013 Elsevier B.V. All rights reserved.

  • 2014 • 135
    Combined In Situ XPS and UHV- Chemical Force Microscopy ( CFM) Studies of the Plasma Induced Surface Oxidation of Polypropylene
    Ozkaya, B. and Grosse-Kreul, S. and Corbella, C. and von Keudell, A. and Grundmeier, G.
    PLASMA PROCESSES AND POLYMERS. Volume: 11 (2014)
    view abstract10.1002/ppap.201300105

    Modification of the surface chemistry and correlated adhesive properties of polypropylene (PP) by means of an electron cyclotron resonance (ECR) oxygen plasma source is studied based on an in situ ultra-high-vacuum (UHV)-analytical approach. To determine the plasma induced chemical changes without exposure to atmosphere, X-ray excited valence band (VB) spectroscopy and core level X-ray photoelectron spectroscopy (XPS) are performed. Adhesive properties are characterized by means of UHV chemical force microscopy (UHV-CFM). Correlation of XPS and UHV-CFM data indicate that interactions between a SiO2-tip and the modified PP surface is dominated by hydrogen bonds between surface silanol groups on the tip and induced oxidized species on PP surface. Such interactions are maximized in the initial phase of surface oxidation.

  • 2014 • 134
    Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates
    Guarise, M. and Dalla Piazza, B. and Berger, H. and Giannini, E. and Schmitt, T. and Rønnow, H.M. and Sawatzky, G.A. and Van Den Brink, J. and Altenfeld, D. and Eremin, I. and Grioni, M.
    NATURE COMMUNICATIONS. Volume: 5 (2014)
    view abstract10.1038/ncomms6760

    The high-Tc cuprate superconductors are close to antiferromagnetic order. Recent measurements of magnetic excitations have reported an intriguing similarity to the spin waves - magnons - of the antiferromagnetic insulating parent compounds, suggesting that magnons may survive in damped, broadened form throughout the phase diagram. Here we show by resonant inelastic X-ray scattering on Bi2Sr2CaCu2O8+δ (Bi-2212) that the analogy with spin waves is only partial. The magnon-like features collapse along the nodal direction in momentum space and exhibit a photon energy dependence markedly different from the Mott-insulating case. These observations can be naturally described by the continuum of charge and spin excitations of correlated electrons. The persistence of damped magnons could favour scenarios for superconductivity built from quasiparticles coupled to spin fluctuations. However, excitation spectra composed of particle-hole excitations suggest that superconductivity emerges from a coherent treatment of electronic spin and charge in the form of quasiparticles with very strong magnetic correlations. © 2014 Macmillan Publishers Limited. All rights reserved.

  • 2014 • 133
    MCrAlY bondcoats by high-velocity atmospheric plasma spraying
    Mauer, G. and Sebold, D. and Vaßen, R.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 23 (2014)
    view abstract10.1007/s11666-013-0026-5

    MCrAlY bondcoats (M = Co, Ni) are used to protect metallic substrates from oxidation and to improve adhesion of ceramic thermal barrier coatings for high temperature applications, such as in land-based and aviation turbines. Since MCrAlYs are prone to take up oxygen during thermal spraying, bondcoats often are manufactured under inert gas conditions at low pressure. Plasma spraying at atmospheric conditions is a cost-effective alternative if it would be possible to limit the oxygen uptake as well as to obtain sufficiently dense microstructures. In the present work, high-velocity spray parameters were developed for the TriplexPro 210 three-cathode plasma torch using MCrAlY powders of different particle size fractions to achieve these objectives. The aims are conflictive since the former requires cold conditions, whereas the latter is obtained by more elevated particle temperatures. High particle velocities can solve this divergence as they imply shorter time for oxidation during flight and contribute to coating densification by kinetic rather than thermal energy. Further aims of the experimental work were high deposition efficiencies as well as sufficient surface roughness. The oxidation behavior of the sprayed coatings was characterized by thermal gravimetric analyses and isothermal heat treatments. © 2013 ASM International.

  • 2013 • 132
    Ion-induced oxidation of aluminum during reactive magnetron sputtering
    Kreiter, O. and Grosse-Kreul, S. and Corbella, C. and von Keudell, A.
    JOURNAL OF APPLIED PHYSICS. Volume: 113 (2013)
    view abstract10.1063/1.4799052

    Particle beam experiments were conducted in an ultra-high-vacuum vessel to mimic target poisoning during reactive magnetron sputtering of aluminum. Aluminum targets were exposed to quantified beams of argon ions, oxygen atoms and molecules, and aluminum vapour. The growth and etch rates were measured in situ by means of an Al-coated quartz crystal microbalance. The chemical state of the target surface was monitored in-situ by real-time Fourier transform infrared spectroscopy. The surface processes were modelled through a set of balance equations providing sputter yields and sticking coefficients. The results indicate that the oxygen uptake of the aluminum surface is enhanced by a factor 1 to 2 by knock-on implantation and that the deposition of aluminum is not affected by the oxidation state of the surface. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799052]

  • 2013 • 131
    Nano-gold diggers: Au-Assisted SiO2-decomposition and desorption in supported nanocatalysts
    Ono, L.K. and Behafarid, F. and Cuenya, B.R.
    ACS NANO. Volume: 7 (2013)
    view abstract10.1021/nn404744b

    An investigation of the thermal stability of size-selected Au nanoparticles (NPs) synthesized via inverse micelle encapsulation and deposited on SiO 2(4 nm)/Si(100) is presented. The size and mobility of individual Au NPs after annealing at elevated temperatures in ultrahigh vacuum (UHV) was monitored via atomic force microscopy (AFM). An enhanced thermal stability against coarsening and lack of NP mobility was observed up to 1343 K. In addition, a drastic decrease in the average NP height was detected with increasing annealing temperature, which was not accompanied by the sublimation of Au atoms/clusters in UHV. The apparent decrease in the Au NP height observed is assigned to their ability to dig vertical channels in the underlying SiO 2 support. More specifically, a progressive reduction in the thickness of the SiO2 support underneath and in the immediate vicinity of the NPs was evidenced, leading to NPs partially sinking into the SiO2 substrate. The complete removal of silicon oxide in small patches was observed to take place around the Au NPs after annealing at 1343 K in UHV. These results reveal a Au-assisted oxygen desorption from the support via reverse oxygen spillover to the NPs. © 2013 American Chemical Society.

  • 2013 • 130
    Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: The influence of the faradaic tip reaction
    Nebel, M. and Grützke, S. and Diab, N. and Schulte, A. and Schuhmann, W.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 52 (2013)
    view abstract10.1002/anie.201301098

    The influence of the reaction rate at the SECM tip on the overall imaging result is often neglected during respiration studies performed by SECM. The effect of the driving force of the tip reaction is elucidated using a potential pulse profile implemented into a constant-distance mode. Time-dependent data acquisition allows visualization of the transition between a tip behaving as a passive observer and a tip actively inducing transmembrane diffusion of oxygen. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2013 • 129
    Enhancing the activity of Pd on carbon nanofibers for deoxygenation of amphiphilic fatty acid molecules through support polarity
    Gosselink, R.W. and Xia, W. and Muhler, M. and De Jong, K.P. and Bitter, J.H.
    ACS CATALYSIS. Volume: 3 (2013)
    view abstract10.1021/cs400478q

    The influence of support polarity on Pd/CNF for the deoxygenation of fatty acids was studied. Catalysts with a low (O/C = 3.5 × 10-2 at/at from X-ray photoelectron spectroscopy (XPS)) and a high (O/C = 5.9 × 10-2 at/at from XPS) amount of oxygen containing groups on the support were prepared. The latter were introduced via a HNO3 gas phase oxidation treatment on Pd loaded supports. The presence of oxygen containing groups was beneficial for the activity of Pd for the deoxygenation of the amphiphilic stearic acid. This is attributed to a favorable mode of adsorption of the reactant via the carboxylic acid group on the more polar support in the vicinity of the catalytically active Pd nanoparticles. © 2013 American Chemical Society.

  • 2013 • 128
    A kinetic study of oxygen reduction reaction and characterization on electrodeposited gold nanoparticles of diameter between 17 nm and 40 nm in 0.5 M sulfuric acid
    Wang, Y. and Laborda, E. and Ward, K.R. and Tschulik, K. and Compton, R.G.
    NANOSCALE. Volume: 5 (2013)
    view abstract10.1039/c3nr02340k

    Kinetic and mechanistic studies of the oxygen reduction reaction (ORR) in oxygen saturated 0.5 M sulfuric acid at 298 K at a gold macroelectrode and at an electrodeposited gold nanoparticle-modified glassy carbon electrode are reported. The conditions of electrodeposition are optimized to obtain small nanoparticles of diameter from 17 nm to 40 nm. The mechanism and kinetics of ORR on the gold macroelectrode are investigated and compared with those obtained for nanoparticle-modified electrodes. The mechanism for this system includes two electron and two proton transfers and hydrogen peroxide as the final product. The first electron transfer step corresponding to the reduction of O2 to O2 - is defined as the rate determining step. No significant changes are found for the nanoparticles here employed: electron transfer rate constant (k0) is k0,bulk = 0.30 cm s -1 on the bulk material and k0,nano = 0.21 cm s -1 on nanoparticles; transfer coefficient (α) changes from αbulk = 0.45 on macro-scale to αnano = 0.37 at the nano-scale. © The Royal Society of Chemistry 2013.

  • 2013 • 127
    Effect of oxygen content in NiCoCrAlY bondcoat on the lifetimes of EB-PVD and APS thermal barrier coatings
    Song, P. and Naumenko, D. and Vassen, R. and Singheiser, L. and Quadakkers, W.J.
    SURFACE AND COATINGS TECHNOLOGY. Volume: 221 (2013)
    view abstract10.1016/j.surfcoat.2013.01.054

    The effect of oxygen content in NiCoCrAlY bondcoat on the cyclic oxidation lifetimes of EB-PVD and APS thermal barrier coatings (TBC) has been studied. The EB-PVD TBC system with an oxygen content of 0.05 wt. % in NiCoCrAlY bondcoat shows five times longer lifetimes compared to a TBC system with 0.2. wt% oxygen in the bondcoat. In the bondcoat with the high oxygen content the minor (0.3. wt.%) yttrium addition was found to be tied up by oxygen into fine precipitates of yttrium aluminates. Thereby the beneficial effect of yttrium onto the adherence of the alumina scale was significantly reduced. The critical scale thickness at failure was by about a factor of two lower for the high oxygen bondcoat than for the low oxygen bondcoat. In contrast to EB-PVD TBC systems, no detrimental effect of increasing oxygen content on the lifetime of APS-TBC systems was observed. This can be explained by a different failure mechanism of APS-TBC systems, whereby the lifetime is mainly determined by the rate of crack propagation through the ceramic topcoat. © 2013 Elsevier B.V.

  • 2013 • 126
    Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction
    Masa, J. and Zhao, A. and Xia, W. and Sun, Z. and Mei, B. and Muhler, M. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 34 (2013)
    view abstract10.1016/j.elecom.2013.05.032

    We show in this study that the presence of trace metal residues in some supposedly metal-free catalysts for oxygen reduction, at concentrations which are difficult to detect using conventional methods such as XPS and EDX, can profoundly promote the ORR activity of the catalysts. © 2013 Elsevier B.V. All rights reserved.

  • 2013 • 125
    Chemical and Physical Sputtering of Polyethylene Terephthalate (PET)
    Grosse-Kreul, S. and Corbella, C. and von Keudell, A.
    PLASMA PROCESSES AND POLYMERS. Volume: 10 (2013)
    view abstract10.1002/ppap.201200094

    The polymer polyethylene terephthalate (PET) has been exposed to quantified beams of argon ions and oxygen atoms and molecules. The etch rate (ER) and the surface composition of PET thin films have been analyzed by real time in situ Fourier transform infrared spectroscopy (FTIR). After the onset of the exposure of PET to the ion beam, the ER decreases rapidly by one order of magnitude irrespective of the ion energy. This slowing down of the ER is caused by cross-linking of the polymer surface. The steady state etch yields are generally orders of magnitude higher than predicted by computer calculations. The addition of oxygen to the particle flux is only changing the surface composition. At low ion energies, chemical sputtering dominates causing very high sputter yields. In addition, no threshold ion energy is observed. [GRAPHICS] .

  • 2013 • 124
    A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence
    Kim, J.-H. and O'Brien, K.M. and Sharma, R. and Boshoff, H.I.M. and Rehren, G. and Chakraborty, S. and Wallach, J.B. and Monteleone, M. and Wilson, D.J. and Aldrich, C.C. and Barry, C.E. and Rhee, K.Y. and Ehrt, S. and Schnappinger, D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. Volume: 110 (2013)
    view abstract10.1073/pnas.1315860110

    Antibacterial drug development suffers from a paucity of targets whose inhibition kills replicating and nonreplicating bacteria. The latter include phenotypically dormant cells, known as persisters, which are tolerant to many antibiotics and often contribute to failure in the treatment of chronic infections. This is nowhere more apparent than in tuberculosis caused by Mycobacterium tuberculosis, a pathogen that tolerates many antibiotics once it ceases to replicate. We developed a strategy to identify proteins that Mycobacterium tuberculosis requires to both grow and persist and whose inhibition has the potential to prevent drug tolerance and persister formation. This strategy is based on a tunable dualcontrol genetic switch that provides a regulatory range spanning three orders of magnitude, quickly depletes proteins in both replicating and nonreplicating mycobacteria, and exhibits increased robustness to phenotypic reversion. Using this switch, we demonstrated that depletion of the nicotinamide adenine dinucleotide synthetase (NadE) rapidly killed Mycobacterium tuberculosis under conditions of standard growth and nonreplicative persistence induced by oxygen and nutrient limitation as well as during the acute and chronic phases of infection in mice. These findings establish the dual-control switch as a robust tool with which to probe the essentiality of Mycobacterium tuberculosis proteins under different conditions, including those that induce antibiotic tolerance, and NadE as a target with the potential to shorten current tuberculosis chemotherapies.

  • 2013 • 123
    Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density
    Shao, M. and Zafar, M.N. and Falk, M. and Ludwig, R. and Sygmund, C. and Peterbauer, C.K. and Guschin, D.A. and MacAodha, D. and Conghaile, P.Ó. and Leech, D. and Toscano, M.D. and Shleev, S. and Schuhmann, W. and Gorton, L.
    CHEMPHYSCHEM. Volume: 14 (2013)
    view abstract10.1002/cphc.201300046

    After initial testing and optimization of anode biocatalysts, a membraneless glucose/oxygen enzymatic biofuel cell possessing high coulombic efficiency and power output was fabricated and characterized. Two sugar oxidizing enzymes, namely, pyranose dehydrogenase from Agaricus meleagris (AmPDH) and flavodehydrogenase domains of various cellobiose dehydrogenases (DHCDH) were tested during the pre-screening. The enzymes were mixed, "wired" and entrapped in a low-potential Os-complex-modified redox-polymer hydrogel immobilized on graphite. This anode was used in combination with a cathode based on bilirubin oxidase from Myrothecium verrucaria adsorbed on graphite. Optimization showed that the current density for the mixed enzyme electrode could be further improved by using a genetically engineered variant of the non-glycosylated flavodehydrogenase domain of cellobiose dehydrogenase from Corynascus thermophilus expressed in E. coli (ngDHCtCDHC310Y) with a high glucose-turnover rate in combination with an Os-complex-modified redox polymer with a high concentration of Os complexes as well as a low-density graphite electrode. The optimized biofuel cell with the AmPDH/ngDHCtCDHC310Y anode showed not only a similar maximum voltage as with the biofuel cell based only on the ngDH CtCDHC310Y anode (0.55 V) but also a substantially improved maximum power output (20 μW cm-2) at 300 mV cell voltage in air-saturated physiological buffer. Most importantly, the estimated half-life of the mixed biofuel cell can reach up to 12 h, which is apparently longer than that of a biofuel cell in which the bioanode is based on only one single enzyme. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2013 • 122
    Silicon oxide barrier films deposited on PET foils in pulsed plasmas: Influence of substrate bias on deposition process and film properties
    Steves, S. and Ozkaya, B. and Liu, C.-N. and Ozcan, O. and Bibinov, N. and Grundmeier, G. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 46 (2013)
    view abstract10.1088/0022-3727/46/8/084013

    A widely used plastic for packaging, polyethylene terephtalate (PET) offers limited barrier properties against gas permeation. For many applications of PET (from food packaging to micro electronics) improved barrier properties are essential. A silicon oxide barrier coating of PET foils is applied by means of a pulsed microwave driven low-pressure plasma. While the adjustment of the microwave power allows for a control of the ion production during the plasma pulse, a substrate bias controls the energy of ions impinging on the substrate. Detailed analysis of deposited films applying oxygen permeation measurements, x-ray photoelectron spectroscopy and atomic force microscopy are correlated with results from plasma diagnostics describing the deposition process. The influence of a change in process parameters such as gas mixture and substrate bias on the gas temperature, electron density, mean electron energy, ion energy and the atomic oxygen density is studied. An additional substrate bias results in an increase in atomic oxygen density up to a factor of 6, although plasma parameter such as electron density of ne = 3.8 ± 0.8 x 1017 m-3 and electron temperature of kBT e = 1.7 ± 0.1 eV are unmodified. It is shown that atomic oxygen densities measured during deposition process higher than nO = 1.8 x 1021 m-3 yield in barrier films with a barrier improvement factor up to 150. Good barrier films are highly cross-linked and show a smooth morphology. © 2013 IOP Publishing Ltd.

  • 2013 • 121
    Adsorption of amino acids on the magnetite-(111)-surface: A force field study
    Bürger, A. and Magdans, U. and Gies, H.
    JOURNAL OF MOLECULAR MODELING. Volume: 19 (2013)
    view abstract10.1007/s00894-012-1606-x

    Magnetite (Fe3O4) is an important biomineral, e.g., used by magnetotactic bacteria. The connection between the inorganic magnetite-(111)-surface and the organic parts of the bacteria is the magnetosome membrane. The membrane is built by different magnetosome membrane proteins (MMPs), which are dominated by the four amino acids glycine (Gly), aspartic acid (Asp), leucine (Leu) and glutamic acid (Glu). Force field simulations of the interaction of the magnetite-(111)-surface and the main amino acid compounds offer the possibility to investigate if and how the membrane proteins could interact with the mineral surface thus providing an atomistic view on the respective binding sites. In a force field simulation the four amino acids were docked on the Fe-terminated magnetite-(111)-surface. The results show that it is energetically favorable for the amino acids to adsorb on the surface with Fe-O-distances between 2.6 Å and 4.1 Å. The involved O-atoms belong to the carboxyl-group (Asp and Glu) or to the carboxylate-group (Gly, Leu and Glu). Electrostatic interactions dominate the physisorption of the amino acids. During the simulations, according to the frequency of the best results, the global minimum for the docking interaction could be attained for all amino acids analyzed. © 2012 Springer-Verlag Berlin Heidelberg.

  • 2013 • 120
    Reorientation of a single bond within an adsorbed molecule by tunneling electrons
    Henzl, J. and Boom, K. and Morgenstern, K.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 135 (2013)
    view abstract10.1021/ja405809f

    Scanning tunneling microscopy offers the exciting possibility to manipulate individual molecules by vibrational excitation via inelastically tunneling electrons. The electrons transfer energy into molecular vibrational modes, leading to breakage or formation of individual bonds. It is challenging to precisely control intramolecular changes by this process. We demonstrate that for 4,4′-dihydroxyazobenzene adsorbed on Au(111) or Ag(111), the manipulation facilitates rotation of the OH end groups around the C-O bond between metastable states; this corresponds to a reorientation of the hydrogen, the ultimate limit of a conformational change within a molecule. © 2013 American Chemical Society.

  • 2013 • 119
    Dense membranes for oxygen and hydrogen separation (DEMOYS): Project overview and first results
    Pinacci, P. and Louradour, E. and Wimbert, L. and Gindrat, M. and Jarligo, M.O. and Vassen, R. and Comite, A. and Serra, J.M. and Jewulski, J. and Mancuso, L. and Chiesa, P. and Prestat, M. and Ivers-Tiffée, E.
    ENERGY PROCEDIA. Volume: 37 (2013)
    view abstract10.1016/j.egypro.2013.05.199

    This paper provides an overview of objectives, structure and first results of the DEMOYS project, financially supported by the European Commission in the frame of the 7th FP - Energy. The project started on May 1, 2010 and brings together fifteen Partners, including three Universities, five Research Organizations and seven Industries. The objective of DEMOYS is the development of thin mixed conducting membranes for O2 and H2 separation by using a new deposition technique "Plasma Spraying - Thin Film" (PS-TF) in combination with nano-porous, highly catalytic layers. © 2013 The Author.

  • 2013 • 118
    The influence of the residual growth catalyst in functionalized carbon nanotubes on supported Pt nanoparticles applied in selective olefin hydrogenation
    Chen, P. and Chew, L.M. and Xia, W.
    JOURNAL OF CATALYSIS. Volume: 307 (2013)
    view abstract10.1016/j.jcat.2013.06.030

    The influence of the residual growth catalyst on the reducibility and catalytic activity of Pt nanoparticles supported on oxygen- and nitrogen-functionalized CNTs (OCNTs and NCNTs) was systematically investigated. It was found that the presence of the residual growth catalyst significantly influenced the oxygen and nitrogen functionalization of CNTs, which consequently altered the reducibility of the supported Pt nanoparticles. Pt nanoparticles on NCNTs showed a higher stability against sintering in reducing atmosphere at 200 C and 400 C than those on OCNTs. On NCNTs, Pt was in a higher oxidation state and was not as easily reducible as on OCNTs. In hydrogenation catalysis, removing the residual growth catalyst is essential for the supported Pt catalyst to achieve a better performance. Compared with Pt on OCNTs, Pt on NCNTs was less active, but more selective in olefin hydrogenation due to the poisoning effect of the surface nitrogen species. © 2013 Elsevier Inc. All rights reserved.

  • 2013 • 117
    Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction
    Dobrzeniecka, A. and Zeradjanin, A. and Masa, J. and Puschhof, A. and Stroka, J. and Kulesza, P.J. and Schuhmann, W.
    CATALYSIS TODAY. Volume: 202 (2013)
    view abstract10.1016/j.cattod.2012.03.060

    The redox competition mode of scanning electrochemical microscopy (RC-SECM) was used to study the electrocatalytic activity of three different non-noble metal O2 reduction catalysts at a pH value of 7.4, namely; multi-walled carbon nanotubes (MWCNTs), cobalt protoporphyrin (CoP) and a composite of MWCNTs/CoP. The collection efficiency of a scanning electrochemical microscopy (SECM) tip for the H2O2 generated by the reduction of O2 at the catalyst layer was almost 100%. Consequently, SECM experiments in a combined redox competition and generator/collector mode could be applied for the determination of the number of electrons exchanged during O2 reduction, leading to improved understanding of the intrinsic features of catalyst activity. This approach avoids the typical limitations encountered with rotating ring disk electrode (RRDE) voltammetry, notably, the variation of the quantity of H2O2 in the proximity of the electrode with the speed of electrode rotation or the chemical decomposition of reaction intermediates on the Pt ring, which often introduce inconsistencies and errors in the measured values of the number of exchanged electrons. It is commonly assumed that the O2 reduction reaction on most non-noble metal catalysts proceeds via formation of H2O 2 as an intermediate. The follow-up reaction of H2O 2, typically chemical decomposition or electrochemical reduction, influences the overall number of electrons exchanged during O2 reduction. In this study, we have confirmed by comparing the rate of electrochemical reduction of H2O2 using rotating disk electrode (RDE) measurements with its rate of chemical decomposition studied using a positioned SECM tip, that for the MWCNTs/CoP catalyst, chemical decomposition is predominantly determining the overall number of exchanged electrons per O2 molecule. © 2012 Elsevier B.V.

  • 2013 • 116
    N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions
    Zhao, A. and Masa, J. and Muhler, M. and Schuhmann, W. and Xia, W.
    ELECTROCHIMICA ACTA. Volume: 98 (2013)
    view abstract10.1016/j.electacta.2013.03.043

    Nitrogen-doped carbon materials were synthesized and used as metal-free electrocatalysts for the oxygen reduction reaction (ORR) under alkaline conditions. The synthesis was achieved by thermal treatment of nitrogen-containing polymers diluted in different carbon materials. Polypyrrole, polyaniline and polyacrylonitrile were used as N precursors. Carbon black and two types of commercial carbon nanotubes were used as carbon matrices. The obtained N contents were in the range of 1-1.8 wt.%. Different N species including pyridinic, pyrrolic and quaternary N were quantitatively determined by X-ray photoelectron spectroscopy. The ORR activities were evaluated in 0.1 M KOH. Rotating disc electrode studies revealed the presence of multiple active centers in all the samples. The sample obtained using polypyrrole and small diameter nanotubes (ca. 15 nm) had the highest onset potential at -0.07 V vs. Ag/AgCl/3 M KCl, which also showed a significantly higher electrochemical stability than the sample from carbon black and polypyrrole. The ORR activity was not correlated to the total nitrogen amount, but to the amount of pyridinic and quaternary N species. For the onset potential and the (Npyridinic + Nquaternary)/Ntotal ratio a quasi-linear relation was found, which points to the substantial role of pyridinic- and quaternary-N species in ORR catalysis. © 2013 Elsevier Ltd. All rights reserved.

  • 2013 • 115
    Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape
    Neumann, C.C.M. and Laborda, E. and Tschulik, K. and Ward, K.R. and Compton, R.G.
    NANO RESEARCH. Volume: 6 (2013)
    view abstract10.1007/s12274-013-0328-4

    The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles. The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition. Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%-0.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  • 2013 • 114
    Detection of nitric oxide and nitroxyl with benzoresorufin-based fluorescent sensors
    Apfel, U.-P. and Buccella, D. and Wilson, J.J. and Lippard, S.J.
    INORGANIC CHEMISTRY. Volume: 52 (2013)
    view abstract10.1021/ic302793w

    A new family of benzoresorufin-based copper complexes for fluorescence detection of NO and HNO is reported. The copper complexes, CuBRNO1-3, elicit 1.5-4.8-fold emission enhancement in response to NO and HNO. The three sensors differ in the nature of the metal-binding site. The photophysical properties of these sensors are investigated with assistance from density functional theory calculations. The fluorescence turn-on observed upon reaction with HNO is an unexpected result that is discussed in detail. The utility of the new sensors for detecting HNO and NO in HeLa cells and RAW 264.7 macrophages is demonstrated. © 2013 American Chemical Society.

  • 2013 • 113
    Ammonia-annealed TiO2 as a negative electrode material in Li-Ion batteries: N doping or oxygen deficiency?
    Ventosa, E. and Xia, W. and Klink, S. and Mantia, F.L. and Mei, B. and Muhler, M. and Schuhmann, W.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 19 (2013)
    view abstract10.1002/chem.201302306

    Improving the chemical diffusion of Li ions in anatase TiO2 is essential to enhance its rate capability as a negative electrode for Li-ion batteries. Ammonia annealing has been used to improve the rate capability of Li4Ti5O12. Similarly, ammonia annealing improves the Li-ion storage performance of anatase TiO2 in terms of the stability upon cycling and the Crate capability. In order to distinguish whether N doping or oxygen deficiencies, both introduced upon ammonia annealing, are more relevant for the observed improvement, a systematic electrochemical study was performed. The results suggest that the creation of oxygen vacancies upon ammonia annealing is the main reason for the improvement of the stability and C-rate capability. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA.

  • 2013 • 112
    Nanotoxicity - An electrochemist's perspective
    Batchelor-McAuley, C. and Tschulik, K. and Compton, R.G.
    PORTUGALIAE ELECTROCHIMICA ACTA. Volume: 31 (2013)
    view abstract10.4152/pea.201305249

    This article highlights the fundamental role of mass-transport for interfacial reactions. First, the dissolution of particulate CaCO3 is discussed demonstrating how the dimensions of the dissolving particle can 'switch' the reaction mechanism from being diffusion to surface controlled. Second, the influence of mass-transoprt on electrochemical reactions is considered, specifically considering how electrode modification can alter the observed voltammetric response in the absence of changing the electrochemical mechanism or the rate of electron transfer. Finally, these observations on the chemically controlling role of mass-transport are concluded by considering nanoparticle toxicity and how 'size effects' may be exhibited even in the absence of altered thermodynamics or interfacial kinetics of the reactions involved.

  • 2013 • 111
    Purified oxygen- and nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation
    Chen, P. and Chew, L.M. and Kostka, A. and Xie, K. and Muhler, M. and Xia, W.
    JOURNAL OF ENERGY CHEMISTRY. Volume: 22 (2013)
    view abstract10.1016/S2095-4956(13)60038-8

    Oxygen- and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydrogenation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 °C led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis. Copyright © 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

  • 2013 • 110
    Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness
    Masa, J. and Schuhmann, W.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 19 (2013)
    view abstract10.1002/chem.201203846

    Incisive modulation of the intermolecular hardness between metalloporphyrins and O2 can lead to the identification of promising catalysts for oxygen reduction. The dependency of the electrocatalytic reduction of O2 by metalloporphyrins on the nature of the central metal yields a volcano-type curve, which is rationalized to be in accordance with the Sabatier principle by using an approximation of the electrophilicity of the complexes. By using electrochemical and UV/Vis data, the influence of a selection of meso-substituents on the change in the energy for the π→π* excitation of manganese porphyrins was evaluated allowing one to quantitatively correlate the influence of the various ligands on the electrocatalysis of O2 reduction by the complexes. A manganese porphyrin was identified that electrocatalyzes the reduction of oxygen at low overpotentials without generating hydrogen peroxide. The activity of the complex became remarkably enhanced upon its pyrolysis at 650 °C. Finding the strength: Incisive modulation of the intermolecular hardness between metalloporphyrins and O2 can lead to the identification of promising catalysts for the oxygen reduction reaction (see figure). The feasibility of this principle is demonstrated in the selection and design of a manganese metalloporphyrin with promising high activity for electrocatalytic oxygen reduction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2013 • 109
    Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe
    Steves, S. and Styrnoll, T. and Mitschker, F. and Bienholz, S. and Nikita, B. and Awakowicz, P.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 46 (2013)
    view abstract10.1088/0022-3727/46/44/445201

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to n e = (1.25 ± 0.26) x 10^17 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8) x 10^15 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K. © 2013 IOP Publishing Ltd.

  • 2013 • 108
    Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction
    Liu, W. and Rodriguez, P. and Borchardt, L. and Foelske, A. and Yuan, J. and Herrmann, A.-K. and Geiger, D. and Zheng, Z. and Kaskel, S. and Gaponik, N. and Kötz, R. and Schmidt, T.J. and Eychmüller, A.
    ANGEWANDTE CHEMIE - INTERNATIONAL EDITION. Volume: 52 (2013)
    view abstract10.1002/anie.201303109

    Best of both worlds: PtxPdy, Pt, and Pd aerogels with high surface area and porosity can be synthesized in a controlled fashion by a straightforward and environmentally benign strategy. These materials, which are highly active and stable catalysts for the oxygen reduction reaction in PEFC cathodes, combine the high stability of extended surfaces with the high surface area of nanoparticles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2013 • 107
    Pt-Cu alloys as catalysts for the oxygen reduction reaction - A thin-film study of activity and stability
    Schuppert, A.K. and Topalov, A.A. and Savan, A. and Ludwig, Al. and Mayrhofer, K.J.J.
    ECS TRANSACTIONS. Volume: 58 (2013)
    view abstract10.1149/05801.0587ecst

    Critical factors for the commercial application of fuel cells are the high costs and the limited stability of Pt catalysts. In order to improve the activity and material efficiency, Pt-alloys with nonnoble metals play an essential role. However, stability remains a critical factor for this type of catalysts. In order to understand the dissolution of Pt-alloys and eventually improve their performance, we therefore analyze a Pt-Cu thin-film alloy with varying composition using a combinatorial screening approach coupled to online analytics. © The Electrochemical Society.

  • 2013 • 106
    La-Sr-Fe-Co oxygen transport membranes on metal supports deposited by low pressure plasma spraying-physical vapour deposition
    Zotov, N. and Baumann, S. and Meulenberg, W.A. and Vaßen, R.
    JOURNAL OF MEMBRANE SCIENCE. Volume: 442 (2013)
    view abstract10.1016/j.memsci.2013.04.016

    Dense La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFC) membranes were successfully prepared on NiCoCrAlY metal supports by low pressure plasma spraying-physical vapour deposition. He leakage rate tests and microstructural analysis by SEM of the as-deposited films showed that a gas-tight membrane layer is achieved. Membrane thicknesses are between 40 and 65μm. The oxygen permeation flux was determined at atmospheric pressure in an air-Ar gradient at different temperatures between 700 and 950°C and compared with 1mm thick LSFC pellet. Although leakage was detected, noteworthy oxygen permeation rate of the supported membranes (~0.3mlcm-2min-1 at 885°C) is reported. © 2013 Elsevier B.V.

  • 2013 • 105
    Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts
    Kähler, K. and Holz, M.C. and Rohe, M. and Van Veen, A.C. and Muhler, M.
    JOURNAL OF CATALYSIS. Volume: 299 (2013)
    view abstract10.1016/j.jcat.2012.12.001

    Methanol oxidation was used as test reaction to investigate the influence of the metal, of the support, and of metal-support interactions in Au/ZnO and Au/TiO2 catalysts. Catalytic measurements as well as infrared spectroscopy were applied under continuous flow conditions in fixed-bed reactors. A strong effect of the Au loading ranging from 0.6 wt.% to 1.9 wt.% was found for both Au/ZnO and Au/TiO2 catalysts with Au particle sizes in the range from 3 to 7 nm. Methanol combustion yielding H2O and CO2 was the main reaction path, but also reactions such as partial oxidation of methanol, steam reforming of methanol, methanol decomposition as well as the selective oxidation of methanol to methyl formate, formaldehyde, or dimethoxymethane were found to occur. Smaller Au particles and a higher amount of small Au particles had a beneficial effect on the activity. Infrared spectroscopy identified methoxy species adsorbed on the metal oxides as intermediates in methanol oxidation. The product distribution was found to depend on the oxide used as support due to the different Lewis acidities. On Au/TiO2, strongly bound formates acted as reversible catalyst poison. The catalytic activity was found to be correlated with the number of Au atoms at the perimeter of the Au nanoparticles. Correspondingly, oxygen activation is assumed to occur at their perimeter, and the oxide provides methoxy species reacting at the interface. © 2012 Elsevier Inc. All rights reserved.

  • 2013 • 104
    Surface pre-treatment for barrier coatings on polyethylene terephthalate
    Bahre, H. and Bahroun, K. and Behm, H. and Steves, S. and Awakowicz, P. and Böke, M. and Hopmann, Ch. and Winter, J.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 46 (2013)
    view abstract10.1088/0022-3727/46/8/084012

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. © 2013 IOP Publishing Ltd.

  • 2013 • 103
    Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions
    Zhao, A. and Masa, J. and Schuhmann, W. and Xia, W.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 117 (2013)
    view abstract10.1021/jp4059438

    Nitrogen-doped carbon nanotubes (NCNTs) are highly active electrocatalysts in the oxygen reduction reaction (ORR) at alkaline conditions. However, the initial activation and stabilization of NCNTs have rarely been investigated at industrially relevant conditions. Three types of NCNTs were synthesized by catalytic growth (NCNT-growth) or posttreatment of oxygen-functionalized CNTs with NH3 (NCNT-NH3) or aniline (NCNT-aniline). The obtained NCNTs were treated in 10 M KOH at 80 C for 5 h, and the formation of oxygen groups by alkaline treatment and their interaction with existing nitrogen groups was analyzed. X-ray photoelectron spectroscopy showed that the concentrations of pyridinic and quaternary nitrogen increased in NCNT-growth due to the KOH treatment accompanied by the decrease of pyrrolic nitrogen, whereas the nitrogen groups changed differently in NCNT-NH3 and NCNT-aniline. NCNT-NH3 showed the highest ORR activity before alkaline treatment. After the treatment, the activity of NCNT-growth was higher, whereas those of NCNT-NH3 and NCNT-aniline were lower. These results were found to be correlated with changes in the nitrogen groups caused by alkaline treatment. Furthermore, NCNTs showed different C=O/C-O ratios after alkaline treatment as compared to a strong increase of C-O in CNTs, indicating that the presence of nitrogen in NCNTs influences the formation of oxygen groups on carbon and surface oxidation. © 2013 American Chemical Society.

  • 2013 • 102
    Aging-associated enzyme human clock-1: Substrate-mediated reduction of the diiron center for 5-demethoxyubiquinone hydroxylation
    Lu, T.-T. and Lee, S.J. and Apfel, U.-P. and Lippard, S.J.
    BIOCHEMISTRY. Volume: 52 (2013)
    view abstract10.1021/bi301674p

    The mitochondrial membrane-bound enzyme Clock-1 (CLK-1) extends the average longevity of mice and Caenorhabditis elegans, as demonstrated for Δclk-1 constructs for both organisms. Such an apparent impact on aging and the presence of a carboxylate-bridged diiron center in the enzyme inspired this work. We expressed a soluble human CLK-1 (hCLK-1) fusion protein with an N-terminal immunoglobulin binding domain of protein G (GB1). Inclusion of the solubility tag allowed for thorough characterization of the carboxylate-bridged diiron active site of the resulting GB1-hCLK-1 by spectroscopic and kinetic methods. Both UV-visible and Mössbauer experiments provide unambiguous evidence that GB1-hCLK-1 functions as a 5-demethoxyubiquinone-hydroxylase, utilizing its carboxylate-bridged diiron center. The binding of DMQn (n = 0 or 2) to GB1-hCLK-1 mediates reduction of the diiron center by nicotinamide adenine dinucleotide (NADH) and initiates O2 activation for subsequent DMQ hydroxylation. Deployment of DMQ to mediate reduction of the diiron center in GB1-hCLK-1 improves substrate specificity and diminishes consumption of NADH that is uncoupled from substrate oxidation. Both Vmax and k cat/KM for DMQ hydroxylation increase when DMQ0 is replaced by DMQ2 as the substrate, which demonstrates that an isoprenoid side chain enhances enzymatic hydroxylation and improves catalytic efficiency. © 2013 American Chemical Society.

  • 2013 • 101
    Fundamental studies on the electrocatalytic properties of metal macrocyclics and other complexes for the electroreduction of O2
    Masa, J. and Ozoemena, K.I. and Schuhmann, W. and Zagal, J.H.
    LECTURE NOTES IN ENERGY. Volume: 9 (2013)
    view abstract10.1007/978-1-4471-4911-8_7

    The high prospects of exploiting the oxygen reduction reaction (ORR) for lucrative technologies, for example, in the fuel cells industry, chlor-alkali electrolysis, and metal-air batteries, to name but a few, have prompted enormous research interest in the search for cost-effective and abundant catalysts for the electrocatalytic reduction of oxygen. This chapter describes and discusses the electrocatalysis of oxygen reduction by metallomacrocyclic complexes and the prospect of their potential to be used in fuel cells. Since the main interest of most researchers in this field is to design catalysts which can achieve facile reduction of O2 at a high thermodynamic efficiency, this chapter aims to bring to light the research frontiers uncovering important milestones towards the synthesis and design of promising metallomacrocyclic catalysts which can accomplish the four-electron reduction of O2 at low overpotential and to draw attention to the fundamental requirements for synthesis of improved catalysts. Particular attention has been paid to discussion of the common properties which cut across these complexes and how they may be aptly manipulated for tailored catalyst synthesis. Therefore, besides discussion of the progress attained with regard to synthesis and design of catalysts with high selectivity towards the four-electron reduction of O2, a major part of this chapter highlights quantitative structure-activity relationships (QSAR) which govern the activity and stability of these complexes, which when well understood, refined, and carefully implemented should lead to rational design of better catalysts. A brief discussion about nonmacrocyclic copper (I) complexes, particularly Cu(I) phenanthrolines, and those with a laccase-like structure which exhibit promising activity for ORR has been included in a separate section at the end. © Springer-Verlag London 2013.

  • 2012 • 100
    Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties
    Borchardt, L. and Hasché, F. and Lohe, M.R. and Oschatz, M. and Schmidt, F. and Kockrick, E. and Ziegler, C. and Lescouet, T. and Bachmatiuk, A. and Büchner, B. and Farrusseng, D. and Strasser, P. and Kaskel, S.
    CARBON. Volume: 50 (2012)
    view abstract10.1016/j.carbon.2011.12.036

    Carbide-derived carbons (CDC) with incorporated transition metal nanoparticles (∼2.5 nm) were prepared using a microemulsion approach. Time-consuming post synthesis functionalization of the carbon support material can thus be avoided and nanoparticle sizes can be controlled by changing the microemulsion composition. This synthesis strategy is a technique for the preparation of highly porous carbon materials with a catalytically active component. In particular we investigated the integration of ruthenium, palladium, and platinum in a concentration ranging from 4.45 to 12 wt.%. It was found that the transition metal has a considerable influence on sorption properties of resulting nanoparticle-CDC composite materials. Depending on the used metal salt additive the surface area and the pore volume ranges from 1480 m 2/g and 1.25 cm 3/g for Pt to 2480 m 2/g and 2.0 cm 3/g for Ru doped carbons. Moreover, members of this material class show impressive properties as heterogeneous catalysts. The liquid phase oxidation of tetralin and the partial oxidation of methane were studied, and electrochemical applications were also investigated. Primarily Pt doped CDCs are highly active in the oxygen reduction reaction, which is of great importance in present day fuel cell research. © 2012 Elsevier Ltd. All rights reserved.

  • 2012 • 99
    Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum and its application in electrocatalysis
    Kundu, S. and Nagaiah, T.C. and Chen, X. and Xia, W. and Bron, M. and Schuhmann, W. and Muhler, M.
    CARBON. Volume: 50 (2012)
    view abstract10.1016/j.carbon.2012.05.037

    A hierarchical carbon-fiber composite was synthesized based on carbon cloth (CC) modified with primary carbon microfibers (CMF) and subsequently secondary carbon nanotubes (CNT), thus forming a three-dimensional hierarchical structure with high BET surface area. The primary CMFs and the secondary CNTs are grown with electrodeposited iron nanoparticles as catalysts from methane and ethylene, respectively. After deposition of Pt nanoparticles by chemical vapor deposition from (trimethyl)cyclopentadienylplatinum, the resulting hierarchical composite was used as catalyst in the electrocatalytic oxygen reduction (oxygen reduction reaction, ORR) as specific test reaction. The modification of the CC with CMFs and CNTs improved the electrochemical properties of the carbon composite as revealed by electrochemical impedance measurements evidencing a low charge transfer resistance for redox mediators at the modified CC. X-ray photoelectron spectroscopy measurements were carried out to identify the chemical state and the surface atomic concentration of the Pt catalysts deposited on the hierarchical carbon composites. The ORR activity of Pt supported on different composites was investigated using rotating disk electrode measurements and scanning electrochemical microscopy. These electrochemical studies revealed that the obtained structured catalyst support is very promising for electrochemical applications, e.g. fuel cells. © 2012 Elsevier Ltd. All rights reserved.

  • 2012 • 98
    Mesoporous nitrogen-rich carbon materials as catalysts for the oxygen reduction reaction in alkaline solution
    Nagaiah, T.C. and Bordoloi, A. and Sánchez, M.D. and Muhler, M. and Schuhmann, W.
    CHEMSUSCHEM. Volume: 5 (2012)
    view abstract10.1002/cssc.201100284

    ORR MNC, FTW! Mesoporous nitrogen-rich carbon (MNC) materials are synthesized by using polymer-loaded SBA-15 pyrolyzed at different temperatures. The activity and stability of the catalysts in the oxygen reduction reaction (ORR) are investigated by using cyclic voltammetry and rotating-disk electrode measurements. The MNC material pyrolyzed at 800 °C exhibits a high electrocatalytic activity towards the ORR in alkaline medium. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  • 2012 • 97
    Influence of surface functional groups on lithium ion intercalation of carbon cloth
    Ventosa, E. and Xia, W. and Klink, S. and La Mantia, F. and Muhler, M. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 65 (2012)
    view abstract10.1016/j.electacta.2011.12.128

    Commercial carbon cloth made of PAN-based carbon fibres was used as free-standing anode for lithium intercalation. The role of surface functional groups on the specific irreversible charge loss and reversible charge during the intercalation and de-intercalation of lithium ions into carbon cloth has been investigated. Oxygen groups have been introduced by nitric acid vapour treatment and subsequently gradually removed by thermal treatment at different temperatures in He or H 2 atmosphere as confirmed by X-ray photoelectron spectroscopy. A clear correlation between the amount of surface-bound oxygen groups and the irreversible specific charge was observed. Three irreversible processes were distinguished during the first cathodic scan: (i) reduction of oxygen groups, (ii) formation of the solid electrolyte interphase (SEI) and (iii) presumably exfoliation. The latter one was only observed for samples with low surface oxygen concentration, and its contribution to the irreversible capacity was small due to the low graphitization degree of the samples. An increased specific reversible charge upon increasing the amount of oxygen-containing groups was observed with the main improvement above 1.5 V. © 2012 Elsevier Ltd. All rights reserved.

  • 2012 • 96
    Direct electron transfer of bilirubin oxidase (Myrothecium verrucaria) at an unmodified nanoporous gold biocathode
    Salaj-Kosla, U. and Pöller, S. and Beyl, Y. and Scanlon, M.D. and Beloshapkin, S. and Shleev, S. and Schuhmann, W. and Magner, E.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 16 (2012)
    view abstract10.1016/j.elecom.2011.12.007

    Well defined mediatorless bioelectrocatalytic reduction of oxygen with high current densities of 0.8 mA cm - 2 was obtained on nanoporous gold electrodes modified with Myrothecium verrucaria bilirubin oxidase. A stable faradaic response was observed when the enzyme modified electrode was coated with a specifically designed electrodeposition polymer layer. The response of the enzyme electrode was only slightly inhibited by the addition of F -. © 2011 Elsevier B.V. All rights reserved.

  • 2012 • 95
    Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase
    Sosna, M. and Stoica, L. and Wright, E. and Kilburn, J.D. and Schuhmann, W. and Bartlett, P.N.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS. Volume: 14 (2012)
    view abstract10.1039/c2cp41588g

    Carbon nanotubes covalently modified with anthraquinone were used as an electrode for the immobilization of Trametes hirsuta laccase. The adsorbed laccase is capable of oxygen reduction at a mass transport controlled rate (up to 3.5 mA cm-2) in the absence of a soluble mediator. The storage and operational stability of the electrode are excellent. This journal is © 2012 the Owner Societies.

  • 2012 • 94
    Deposition of La 1-xSr xFe 1-yCo yO 3-δ coatings with different phase compositions and microstructures by low-pressure plasma spraying-thin film (LPPS-TF) processes
    Zotov, N. and Hospach A. and Mauer G. and Sebold D. and Vaßen, R.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 21 (2012)
    view abstract10.1007/s11666-012-9768-8

    Perovskite-type materials with the general chemical formula A 1-xÁ xB́ 1-yB́ yO 3δ have received considerable attention as candidates for oxygen separation membranes. Preparation of La 1-xSr xFe 1-yCo yO 3-δ (LSFC) coatings by low-pressure plasma spraying-thin film processes using different plasma spray parameters is reported and discussed. Deposition with Ar-He plasma leads to formation of coatings containing a mixture of cubic LSFC perovskite, SrLaFeO4, FeCo, and metal oxides. Coatings deposited at higher oxygen partial pressures by pumping oxygen into the vacuum chamber contain more than 85% perovskite and only a few percent Fe32xCoxO4, and/or CoO. The microstructures of the investigated LSFC coatings depend sensitively on the oxygen partial pressure, the substrate temperature, the plasma jet velocities, and the deposition rate. Coatings deposited with Ar-rich plasma, relatively low net torch power, and with higher plasma jet velocities are most promising for applications as oxygen permeation membranes. © ASM International.

  • 2012 • 93
    Quantitative studies on the oxygen and nitrogen functionalization of carbon Nanotubes Performed in the Gas Phase
    Li, C. and Zhao, A. and Xia, W. and Liang, C. and Muhler, M.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 116 (2012)
    view abstract10.1021/jp306866q

    Gas-phase methods were applied for the oxygen and nitrogen functionalization of multiwalled carbon nanotubes (CNTs). The oxygen functionalization was performed by HNO 3 vapor treatment at temperatures from 200 to 250 °C for 12 h up to 120 h. The oxygen-functionalized CNTs were used as the starting material for nitrogen functionalization through thermal treatment under NH 3. The BET surface area increased after the treatment in HNO 3 vapor, which also caused the weight loss due to carbon corrosion. The oxygen content increased with increasing treatment time but decreased with increasing temperature, as disclosed by elemental analysis, X-ray photoelectron spectroscopy, and temperature-programmed desorption (TPD) results. The surface acidity increased with increasing treatment time as shown by TPD using NH 3 as a probe molecule. As to nitrogen functionalization, the amount of nitrogen was correlated with the oxygen amount in the starting CNTs. A higher NH 3 concentration caused a lower BET surface area due to carbon corrosion. The incorporation of both oxygen and nitrogen lowered the thermal resistance of CNTs. The nitrogen-functionalized CNTs showed only a slight decrease, in contrast to a significant decrease observed for O-functionalized CNTs. The formation or removal of coordinatively unsaturated carbon like amorphous carbon or defects was found to be involved in all of the functionalization, desorption, and oxidation processes. © 2012 American Chemical Society.

  • 2012 • 92
    Unexpected O and O-3 production in the effluent of He/O-2 microplasma jets emanating into ambient air
    Ellerweg, D. and von Keudell, A. and Benedikt, J.
    PLASMA SOURCES SCIENCE & TECHNOLOGY. Volume: 21 (2012)
    view abstract10.1088/0963-0252/21/3/034019

    Microplasma jets are commonly used to treat samples in ambient air. The effect of admixing air into the effluent may severely affect the composition of the emerging species. Here, the effluent of a He/O-2 microplasma jet has been analyzed in a helium and in an air atmosphere by molecular beam mass spectrometry. First, the composition of the effluent in air was recorded as a function of the distance to determine how fast air admixes into the effluent. Then, the spatial distribution of atomic oxygen and ozone in the effluent was recorded in ambient air and compared with measurements in a helium atmosphere. Additionally, a fluid model of the gas flow with reaction kinetics of reactive oxygen species in the effluent was constructed. In ambient air, the O density declines only slightly faster with distance compared with a helium atmosphere. In contrast, the O-3 density in ambient air increases significantly faster with distance compared with a helium atmosphere. This unexpected behavior cannot be explained by simple recombination reactions of O atoms with O-2 molecules. A reaction scheme involving the reaction of plasma-produced excited O-2* species of unknown identity with ground state O-2 molecules is proposed as a possible explanation for these observations.

  • 2012 • 91
    Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions
    Masa, J. and Bordoloi, A. and Muhler, M. and Schuhmann, W. and Xia, W.
    CHEMSUSCHEM. Volume: 5 (2012)
    view abstract10.1002/cssc.201100643

    Cheers for titania: An N-doped composite of carbon nanotubes (CNTs) and mesoporous TiO 2 is used as support for Pt nanoparticles applied in the oxygen reduction reaction. The composite Pt/N-TiO 2-CNT shows a higher stability than Pt particles on carbon black or N-doped CNTs, as indicated by accelerated stress tests of up to 2000 cycles. The enhanced stability is attributed to strong interactions between TiO 2 and Pt and a higher corrosion resistance of TiO 2 as well as CNTs. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2012 • 90
    Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods
    Gutiérrez-Sánchez, C. and Jia, W. and Beyl, Y. and Pita, M. and Schuhmann, W. and De Lacey, A.L. and Stoica, L.
    ELECTROCHIMICA ACTA. Volume: 82 (2012)
    view abstract10.1016/j.electacta.2011.12.134

    Three immobilization protocols were investigated with respect to direct electron transfer between hierarchical carbon microfibers/carbon nanotubes composite material on graphite rod electrodes and Trametes hirsuta laccase. Immobilization was done by covalent binding of laccase to aminophenyl-modified electrodes via amide-bond formation with carboxylic acid residues or imino-bond formation with aldehyde groups introduced by oxidation of sugar residues of the enzyme's glycosylation shell. Moreover, immobilization was achieved by adsorbing laccase to electrodes hydrophilized with pyrene-hexanoic acid. High current densities for biocatalytic oxygen reduction were obtained for all immobilization strategies. The formation of the imino bonds let to the binding of laccase in close to 100% direct electron transfer configuration and consequently to the highest oxygen reduction currents. © 2012 Elsevier Ltd.

  • 2012 • 89
    A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications
    Pöller, S. and Beyl, Y. and Vivekananthan, J. and Guschin, D.A. and Schuhmann, W.
    BIOELECTROCHEMISTRY. Volume: 87 (2012)
    view abstract10.1016/j.bioelechem.2011.11.015

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. © 2011 Elsevier B.V.

  • 2012 • 88
    Influence of processing and heat treatment on corrosion resistance and properties of high alloyed steel coatings
    Hill, H. and Weber, S. and Raab, U. and Theisen, W. and Wagner, L.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 21 (2012)
    view abstract10.1007/s11666-012-9788-4

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance. © 2012 ASM International.

  • 2012 • 87
    Multispectral photoacoustic coded excitation using pseudorandom codes
    Beckmann, M.F. and Friedrich, C.-S. and Mienkina, M.P. and Gerhardt, N.C. and Hofmann, M.R. and Schmitz, G.
    PROGRESS IN BIOMEDICAL OPTICS AND IMAGING - PROCEEDINGS OF SPIE. Volume: 8223 (2012)
    view abstract10.1117/12.907427

    Photoacoustic imaging (PAI) combines high ultrasound resolution with optical contrast. Laser-generated ultrasound is potentially beneficial for cancer detection, blood oxygenation imaging, and molecular imaging. PAI is generally performed using solid state Nd:YAG lasers in combination with optical parametric oscillators. An alternative approach uses laser diodes with higher pulse repetition rates but lower power. Thus, improvement in signal-to-noise ratio (SNR) is a key step towards applying laser diodes in PAI. To receive equivalent image quality using laser diodes as with Nd:YAG lasers, the lower power must be compensated by averaging, which can be enhanced through coded excitation. In principle, perfect binary sequences such as orthogonal Golay codes can be used for this purpose when acquiring data at multiple wavelengths. On the other hand it was shown for a single wavelength that sidelobes can remain invisible even if imperfect sequences are used. Moreover, SNR can be further improved by using an imperfect sequence compared to Golay codes. Here, we show that pseudorandom sequences are a good choice for multispectral photoacoustic coded excitation (MSPACE). Pseudorandom sequences based upon maximal length shift register sequences (m-sequences) are introduced and analyzed for the purpose of use in MSPACE. Their gain in SNR exceeds that of orthogonal Golay codes for finite code lengths. Artefacts are introduced, but may remain invisible depending on SNR and code length. © 2012 SPIE.

  • 2012 • 86
    Thin-film Cu-Pt(111) near-surface alloys: Active electrocatalysts for the oxygen reduction reaction
    Henry, J.B. and Maljusch, A. and Huang, M. and Schuhmann, W. and Bondarenko, A.S.
    ACS CATALYSIS. Volume: 2 (2012)
    view abstract10.1021/cs300165t

    A simple method is presented for the formation of thin films of Cu-Pt(111) near-surface alloys (NSA). In these thin films, the solute metal (Cu) is preferentially located in the second platinum layer and protected by a Pt surface layer. The NSA-films act as active and fairly stable electrocatalysts for the reduction of oxygen with the activity and stability which approach those for bulk single crystalline Pt-alloy surfaces and ∼5 times more active than state-of-the-art Pt thin films. © 2012 American Chemical Society.

  • 2012 • 85
    Oxygen reduction reaction using N 4-metallomacrocyclic catalysts: Fundamentals on rational catalyst design
    Masa, J. and Ozoemena, K. and Schuhmann, W. and Zagal, J.H.
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES. Volume: 16 (2012)
    view abstract10.1142/S1088424612300091

    In this review, we describe and discuss the developments in the use of metalloporphyrins and metallophthalocyanines as catalysts for oxygen reduction in aqueous electrolytes. The main goal of most researchers in this field has been to design catalysts which can achieve facile reduction of oxygen by the four-electron transfer pathway at the lowest overpotential possible. With this in mind, the primary objective of this review was to bring to light the research frontiers uncovering important milestones towards the synthesis and design of promising N 4-metallomacrocyclic catalysts which accomplish the four-electron reduction of oxygen, and, based on literature, to draw attention to the fundamental requirements for synthesis of improved catalysts operating at low overpotentials. Our emphasis was not to make parallel comparisons between individual classes of N 4-metallomacrocyclic complexes with respect to their activity, but rather to focus on the commonalities of the fundamental properties that govern their reactivities and how these may be aptly manipulated to develop better catalysts. Therefore, besides discussion of the progress attained with regard to synthesis and design of catalysts with high selectivity towards four-electron reduction of O 2, a major part of the review highlights quantitative structure-activity relationships (QSAR) which govern the activity and stability of these complexes, which when well understood, refined and carefully implemented should constitute a fundamental gateway for rational design of better catalysts. Copyright © 2012 World Scientific Publishing Company.

  • 2012 • 84
    On the role of the residual iron growth catalyst in the gasification of multi-walled carbon nanotubes with carbon dioxide
    Jin, C. and Xia, W. and Chen, P. and Muhler, M.
    CATALYSIS TODAY. Volume: 186 (2012)
    view abstract10.1016/j.cattod.2012.02.052

    The gasification of carbon with CO 2 was applied to examine the role of the residual iron growth catalyst in multi-walled carbon nanotubes (CNTs), which were pre-treated either by refluxing in nitric acid at 120 °C or by nitric acid vapor at 200 °C. Temperature-programmed desorption (TPD) and surface reaction (TPSR) experiments were performed in He and CO 2, respectively. The Fe nanoparticles were retained after the treatment in HNO 3 vapor, whereas the liquid HNO 3 treatment was able to remove the accessible residual Fe catalyst. The exposed Fe nanoparticles were found to catalyze the gasification of CNTs with CO 2 according to the reverse Boudouard reaction C + CO 2 = 2CO. In case of the CNTs pretreated in HNO 3 vapor, evolving CO 2 formed due to the decomposition of oxygen-containing functional groups during the TPD experiments was fully converted above 750 °C into desorbing CO, and the addition of 2000 ppm CO 2 in the feed gas during the TPSR experiments resulted in full conversion at 1000 °C. X-ray photoelectron spectroscopy studies show that the treatment in HNO 3 vapor at 200 °C favors the formation of oxygen species doubly bound to carbon (CO groups). During the TPSR experiments, CO 2 as a weak oxidant partially oxidized the CNTs leading to the formation of CO groups, and a much higher amount of these groups was detected on HNO 3 vapor-treated CNTs with residual Fe catalyst. Their presence suggests that CO groups are reaction intermediates of the CNT gasification with CO 2, which is considered an effective test reaction for the presence of residual catalytically active nanoparticles. © 2012 Elsevier B.V.

  • 2012 • 83
    Probing the mechanism of low-temperature CO oxidation on Au/ZnO catalysts by vibrational spectroscopy
    Noei, H. and Birkner, A. and Merz, K. and Muhler, M. and Wang, Y.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 116 (2012)
    view abstract10.1021/jp302723r

    Adsorption and oxidation of CO on Au/ZnO catalysts were studied by Fourier transform infrared (FTIR) spectroscopy using a novel ultra-high-vacuum (UHV) system. The high-quality UHV-FTIRS data provide detailed insight into the catalytic mechanism of low-temperature CO oxidation on differently pretreated Au/ZnO catalysts. For the samples without O 2 pretreatment, negatively charged Au nanoparticles are identified which exhibit high reactivity to CO oxidation at 110 K, yielding CO 2 as well as carbonate species bound to various ZnO facets. O 2 pretreatment leads to formation of neutral Au nanoparticles where CO is activated on the low-coordinated Au sites at the interface. Activation of impinging O 2 occurs at the Au/ZnO interface and is promoted by preadsorbed CO forming an OC-O 2 intermediate complex, accompanied by charge transfer from Au/ZnO substrate to O 2. The CO molecules adsorbed on ZnO serve as a reservoir for reactants and are mobile enough at 110 K to reach the Au/ZnO interface where they react with activated oxygen yielding CO 2. Different carbonate species are further produced via interaction of formed CO 2 with surface oxygen atoms on ZnO. It was found that the active interface sites are slowly blocked at 110 K by the inert carbonate species, thus causing a gradual decrease of the catalytic activity. © 2012 American Chemical Society.

  • 2012 • 82
    Characterization of the surface of Fe-19Mn-18Cr-C-N during heat treatment in a high vacuum - An XPS study
    Zumsande, K. and Weddeling, A. and Hryha, E. and Huth, S. and Nyborg, L. and Weber, S. and Krasokha, N. and Theisen, W.
    MATERIALS CHARACTERIZATION. Volume: 71 (2012)
    view abstract10.1016/j.matchar.2012.06.002

    Nitrogen-containing CrMn austenitic stainless steels offer evident benefits compared to CrNi-based grades. The production of high-quality parts by means of powder metallurgy could be an appropriate alternative to the standard molding process leading to improved properties. The powder metallurgical production of CrMn austenitic steel is challenging on account of the high oxygen affinity of Mn and Cr. Oxides hinder the densification processes and may lower the performance of the sintered part if they remain in the steel after sintering. Thus, in evaluating the sinterability of the steel Fe-19Mn-18Cr-C-N, characterization of the surface is of great interest. In this study, comprehensive investigations by means of X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy were performed to characterize the surface during heat treatment in a high vacuum. The results show a shift of oxidation up to 600 °C, meaning transfer of oxygen from the iron oxide layer to Mn-based particulate oxides, followed by progressive reduction and transformation of the Mn oxides into stable Si-containing oxides at elevated temperatures. Mass loss caused by Mn evaporation was observed accompanied by Mn oxide decomposition starting at 700 °C. © 2012 Elsevier Inc. All rights reserved.

  • 2012 • 81
    Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries
    Klink, S. and Ventosa, E. and Xia, W. and La Mantia, F. and Muhler, M. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 15 (2012)
    view abstract10.1016/j.elecom.2011.11.012

    Multi-walled CNT were oxidised with nitric acid in liquid and gas-phase. By splitting the capacity and initial charge loss during lithium intercalation into different potential regions, it was possible to relate these values to the CNT surface oxygen groups as determined by XPS. Gas-phase oxidised CNT show a significantly lower amount of initial charge loss (172 mAh/g) compared to liquid-phase oxidised CNT (283 mAh/g). This decrease originates from less pronounced exfoliation likely caused by an increase of surface carbonyl groups. © 2011 Elsevier B.V.

  • 2012 • 80
    Interfacial interaction driven CO oxidation: Nanostructured Ce 1-xLa xO 2-δ/TiO 2 solid solutions
    Katta, L. and Reddy, B.M. and Muhler, M. and Grünert, W.
    CATALYSIS SCIENCE AND TECHNOLOGY. Volume: 2 (2012)
    view abstract10.1039/c2cy00449f

    Titania supported ceria-lanthana solid solutions (Ce xLa 1-xO 2-δ/TiO 2; CLT) have been synthesized by a facile and economical route. Existence of synergism between ceria-lanthana (CL) solid solutions and titania-anatase phase, which leads to decrease in the crystallite size, retarded titania phase transformation, and improved redox properties, has been thoroughly investigated by various techniques, namely, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), Raman spectroscopy (UV-RS and Vis-RS), BET surface area analysis, and temperature programmed reduction (TPR). Two key observations made from the whole exercise were (i) mutual interaction of Ce and Ti ions could impose typical Ce-O-Ti modes at the interfacial region and (ii) the La 3+ ion as a dopant provokes a large number of oxygen vacancies via a charge compensation mechanism. The promising role of these factors in the CO oxidation (one of the most formidable challenges) has been comprehensively described. The observed enhanced activity for the CLT sample is primarily attributed to an apparent specific orientation of the active component over the support, which is endorsed by the interfacial interaction. This specific mode could facilitate the CO adsorption with simultaneous bulk oxygen diffusion for more consumption and in turn better activity. © 2012 The Royal Society of Chemistry.

  • 2012 • 79
    Electrochemical synthesis of metal-polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment
    Masa, J. and Schilling, T. and Bron, M. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 60 (2012)
    view abstract10.1016/j.electacta.2011.11.076

    This work presents a new approach for synthesis of oxygen reduction catalysts constituted of a transition metal, nitrogen and carbon, by thermal treatment of electrochemically synthesized metal-polypyrrole (M-PPy) composites on glassy carbon electrodes. The synthesis procedure involves immobilization of PPy on glassy carbon followed by dosing of metal (M = Mn, Fe and Co) particles, alternately, by electropolymerization and electrochemical reduction respectively. Electrochemical characterization by cyclic voltammetry (CV) and hydrodynamic rotating disk electrode (RDE) measurements show that the M-PPy composites inherently catalyse the electroreduction of oxygen under acidic conditions. The activity of the composites is significantly augmented when they are heat treated at high temperatures (450-850 °C) under a continuous flow of nitrogen. The presence of metallic entities within the M-PPy composite structures and in the structures ensuing after heat treatment was confirmed by energy dispersive X-ray (EDX) analysis. © 2011 Elsevier Ltd. All rights reserved.

  • 2012 • 78
    Single live cell topography and activity imaging with the shear-force-based constant-distance scanning electrochemical microscope
    Schulte, A. and Nebel, M. and Schuhmann, W.
    METHODS IN ENZYMOLOGY. Volume: 504 (2012)
    view abstract10.1016/B978-0-12-391857-4.00012-4

    In recent years, scanning electrochemical microscopy (SECM) has become an important tool in topography and activity studies on single live cells. The used analytical probes ("SECM tips") are voltammetric micro- or nanoelectrodes. The tips may be tracked across a live cell in constant-height or constant-distance mode, while kept at potentials that enable tracing of the spatiotemporal dynamics of functional chemical species in the immediate environment. Depending on the type of single live cells studied, cellular processes addressable by SECM range from the membrane transport of metabolites to the stimulated release of hormones and neurotransmitters and processes such as cell respiration or cell death and differentiation. In this chapter, we provide the key practical details of the constant-distance mode of SECM, explaining the establishment, and operation of the tailored distance control unit that maintains a stable tip-to-cell separation during scanning. The continuously maintained tip positioning of the system takes advantage of the decreasing impact of very short-range hydrodynamic tip-to-surface shear-forces on the vibrational amplitude of an oscillating SECM tip, as the input for a computer-controlled feedback loop regulation. Suitable microelectrode probes that are nondestructive to soft cells are a prerequisite for the success of this methodology and their fabrication and successful application are the other topics covered. © 2012 Elsevier Inc.

  • 2012 • 77
    Toward highly stable electrocatalysts via nanoparticle pore confinement
    Galeano, C. and Meier, J.C. and Peinecke, V. and Bongard, H. and Katsounaros, I. and Topalov, A.A. and Lu, A. and Mayrhofer, K.J.J. and Schüth, F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 134 (2012)
    view abstract10.1021/ja308570c

    The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m2 g-1 and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support. © 2012 American Chemical Society.

  • 2012 • 76
    Electrochemical quartz crystal microbalance study of the Fe-Ga co-deposition
    Iselt, D. and Tschulik, K. and Oswald, S. and Pohl, D. and Schultz, L. and Schlörb, H.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY. Volume: 159 (2012)
    view abstract10.1149/2.028207jes

    The electrochemical co-deposition of iron and gallium from a simple aqueous electrolyte was investigated by means of the electrochemical quartz crystal microbalance technique. The results reveal that alloy deposition occurs at potentials more positive than the deposition potential of single gallium. At the same time, large amounts of hydroxides are chemically precipitated due to a pH increase caused by strong hydrogen evolution. If the pH increase is compensated by applying potential pulses, these hydroxides are re-dissolved and metallic alloy films with low oxygen content are directly accessible. XPS and TEM investigations confirm the formation of an Fe100-xGax alloy (x = 20 ± 4 at.%). © 2012 The Electrochemical Society.

  • 2012 • 75
    Single crystal growth and characterization of mullite-type Bi 2Mn 4O 10
    Burianek, M. and Krenzel, T.F. and Schmittner, M. and Schreuer, J. and Fischer, R.X. and Mühlberg, M. and Nénertd, G. and Schneider, H. and Gesing, T.M.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH. Volume: 103 (2012)
    view abstract10.3139/146.110714

    A part of the pseudo-binary join Bi 2O 3-Bi 2Mn 4O 10 of the ternary system Bi 2O 3 -MnO-MnO 2 was examined using thermo-analytical methods. Because Bi 2Mn 4O 10 melts incongruently single crystals of up to 20 mm in diameter were grown by the top seeded solution growth method in the temperature range from about 1223 K to 1173 K. Single crystal neutron diffraction confirmed the principles of the crystal structure of Bi 2Mn 4O 10 but revealed much smaller distortions of the cation coordination polyhedra. In contrast to the anisotropy observed in other mullite-type Bi containing compounds, the linear thermal expansion of Bi 2Mn 4O 10, as studied by means of dilatometry and X-ray powder diffraction techniques, is characterized by α 11 > α;33 > α22 at room temperature. The relatively large expansion along the a-axis can be attributed to the two oxygen atoms bridging two corner shared MnO 5 tetrahedral pyramids which alternate with the structural void between two adjacent Bi 3+ cations. © 2012 Carl Hanser Verlag.

  • 2012 • 74
    Crystal chemistry and properties of mullite-type Bi 2M 4O 9: An overview
    Schneider, H. and Fischer, R.X. and Gesing, T.M. and Schreuer, J. and Mühlberg, M.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH. Volume: 103 (2012)
    view abstract10.3139/146.110716

    Bi 2M 4O 9 (M = Al 3+, Ga 3+, Fe 3+) belongs to the family of mullite-type crystal structures. The phases are orthorhombic with the space group Pbam. The backbones of the isostructural phases are edge-connected, mullite-type octahedral chains. The octahedral chains are linked by dimers of M 2O 7 tetrahedral groups and by BiO polyhedra. The Bi 3+ cations in Bi 2M 4O 9 contain stereo-chemically active 6s 2 lone electron pairs (LEPs) which are essential for the stabilization of the structure. Although the octahedral chains of the closely related Bi 2Mn 4O 10 are similar to those of Bi 2M 4O 9, Bi 2 Mn 4O 10 contains dimers of edge-connected, five-fold coordinated pyramids instead of four-fold coordinated tetrahedra. Also the 6s 2 LEPs of Bi 3+ in Bi 2Mn 4O 10 are not stereo-chemically active. Complete and continuous solid solutions exist for Bi 2(Al 1-xFe x) 4O 9 and Bi 2(Ga 1-x Fe x) 4O 9 (x = 0 - 1). Things are more complex in the case of the Bi 2(Fe 1-xMn x) 4O 9+y mixed crystals, where a miscibility gap occurs between x = 0.25 - 0.75. In the Fe-rich mixed crystals most Mn atoms enter the octahedra as Mn 4+, with part of the tetrahedral dimers being replaced by fivefold coordinated polyhedra, whereas in the Mn-rich compound Fe 3+ favorably replaces Mn 3+ in the pyramids. The crystal structure of Bi 2M 4O 9 directly controls its mechanical properties. The stiffnesses of phases are highest parallel to the strongly bonded octahedral chains running parallel to the crystallographic c-axis. Perpendicular to the octahedral chains little anisotropy is observed. The temperature- induced expansion perpendicular to the octahedral chains is probably superimposed by contractions. As a result the c-axis expansion appears as relatively high and does not display its lowest value parallel to c, as could be inferred. Maximally 6% of Bi 3+ is substituted by Sr 2+ in Bi 2Al 4O 9 corresponding to a composition of (Bi 0.94Sr 0.06) 2Al 4O 8.94. Sr 2+ for Bi 3+ substitution is probably associated with formation of vacancies of oxygen atoms bridging the tetrahedral dimers. Hopping of oxygen atoms towards the vacancies should strongly enhance the oxygen conductivity. Actually the conductivity is rather low (σ = 7 . 10 -2 S m -1 at 1073 K, 800 °C). An explanation could be the low thermal stability of Sr-doped Bi 2Al 4O 9, especially in coexistence with liquid Bi 2O 3. Therefore, Bi 2Al 4O 9 single crystals and polycrystalline ceramics both with significant amounts of M2+ doping (M = Ca 2+, Sr 2+) have not been produced yet. Thus the question whether or not M 2+-doped Bi 2M 4O 9 is an oxygen conducting material is still open. © 2012 Carl Hanser Verlag.

  • 2012 • 73
    Incommensurate modulation of calcium barium niobate (CBN28 and Ce:CBN28)
    Graetsch, H.A. and Pandey, C.S. and Schreuer, J. and Burianek, M. and Mühlberg, M.
    ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE. Volume: 68 (2012)
    view abstract10.1107/S0108768111054863

    The incommensurately modulated crystal structures of Ca 0.28Ba 0.72Nb 2O 6 (CBN28) and Ce 0.02Ca 0.25Ba 0.72Nb 2O 6 (Ce:CBN28) were refined in the supercentred setting X4bm(AA0,-AA0) of the 3 + 2-dimensional superspace group P4bm(aa1/2,-aa). Both compounds are isostructural with a tetragonal tungsten bronze-type structure. The modulation of CBN28 consists of a wavy distribution of Ba and Ca atoms as well as vacancies on the incompletely occupied Me2 site with 15-fold oxygen coordination. The occupational modulation is coupled with a modulation of the atomic displacement parameters and a very weak modulation of the positional parameters of Me2. The surrounding O atoms show strong displacive modulations with amplitudes up to ca 0.2 Å owing to the cooperative tilting of the rigid NbO 6 octahedra. The Me1 site with 12-fold coordination and Nb atoms are hardly affected by the modulations. Only first-order satellites were observed and the modulations are described by first-order harmonics. In Ce:CBN28 cerium appears to be located on both the Me2 and Me1 sites. Wavevectors and structural modulations are only weakly modified upon substitutional incorporation of 0.02 cerium per formula unit of calcium. © 2012 International Union of Crystallography Printed in Singapore-all rights reserved.

  • 2012 • 72
    SECM and SKPFM Studies of the Local Corrosion Mechanism of Al Alloys - A Pathway to an Integrated SKP-SECM System
    Senöz, C. and Maljusch, A. and Rohwerder, M. and Schuhmann, W.
    ELECTROANALYSIS. Volume: 24 (2012)
    view abstract10.1002/elan.201100609

    Scanning Kelvin Probe Force Microscopy and Scanning Electrochemical Microscopy were applied for the investigation of localized corrosion on heterogeneous aiming on the investigation of the possible correlation between the local surface potential differences, measured by the Kelvin probe technique in ambient conditions, and corrosion during immersion in a corrosive electrolyte. A model sample mimicking the interaction of Al and Cu in Al alloys was chosen to demonstrate the complementary nature of the information received from SKPFM and SECM. The necessary prerequisites for a future integration of SKP and SECM into a single set-up are discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2012 • 71
    The Role of Oxygen and Surface Reactions in the Deposition of Silicon Oxide like Films from HMDSO at Atmospheric Pressure
    Reuter, R. and Rugner, K. and Ellerweg, D. and de los Arcos, T. and von Keudell, A. and Benedikt, J.
    PLASMA PROCESSES AND POLYMERS. Volume: 9 (2012)
    view abstract10.1002/ppap.201100146

    The deposition of thin SiO2-like films by means of atmospheric pressure microplasma jets with admixture of hexamethyldisiloxane (HMDSO) and oxygen and the role of surface reactions in film growth are investigated. Two types of microplasma jets, one with a planar electrodes and operated in helium gas and the other one with a coaxial geometry operated in argon, are used to study the deposition process. The growth rate of the film and the carbon-content in the film are measured as a function of the O2 and HMDSO admixture in the planar jet and are compared to mass spectrometry measurements of the consumption of HMDSO. Additionally, the localized nature of the jetsubstrate interaction is utilized to study surface reactions by applying two jets on a rotating substrate. The addition of oxygen into the gas mixture increases HMDSO depletion and the growth rate and results in the deposition of carbon free films. The surface reaction is responsible for the carbon removal from the growing film. Moreover, carbon free films can be deposited even without addition of oxygen, when coaxial jet operated with argon is used for the surface treatment. We hypothesize that ions or excited species (metastables) could be responsible for the observed effect.

  • 2012 • 70
    Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement
    Sun, Z. and Masa, J. and Xia, W. and König, D. and Ludwig, Al. and Li, Z.-A. and Farle, M. and Schuhmann, W. and Muhler, M.
    ACS CATALYSIS. Volume: 2 (2012)
    view abstract10.1021/cs300187z

    The synthesis of bimetallic nanoparticles (NPs) with well-defined morphology and a size of <5 nm remains an ongoing challenge. Here, we developed a facile and efficient approach to the design of bimetallic nanostructures by the galvanic replacement reaction facilitated by high-intensity ultrasound (100 W, 20 kHz) at low temperatures. As a model system, Pt-Cu NPs deposited on nitrogen-doped carbon nanotubes (NCNTs) were synthesized and characterized by spectroscopic and microscopic techniques. Transmission electron microscopy (TEM) inspection shows that the mean diameter of Pt-Cu NPs can be as low as ≈2.8 nm, regardless of the much larger initial Cu particle size, and that a significant increase in particle number density by a factor of 35 had occurred during the replacement process. The concentration of the Pt precursor solution as well as of the size of the seed particles were found to control the size of the bimetallic NPs. Energy dispersive X-ray spectroscopy performed in the scanning TEM mode confirmed the alloyed nature of the Pt-Cu NPs. Electrochemical oxygen reduction measurements demonstrated that the resulting Pt-Cu/NCNT catalysts exhibit an approximately 2-fold enhancement in both mass- and area-related activities compared with a commercial Pt/C catalyst. © 2012 American Chemical Society.

  • 2012 • 69
    The Role of Oxygen- and Nitrogen-containing Surface Groups on the Sintering of Iron Nanoparticles on Carbon Nanotubes in Different Atmospheres
    Sánchez, M.D. and Chen, P. and Reinecke, T. and Muhler, M. and Xia, W.
    CHEMCATCHEM. Volume: 4 (2012)
    view abstract10.1002/cctc.201200286

    The sintering of iron nanoparticles on carbon nanotubes (CNTs) under different atmospheres was investigated. CNTs were first treated with HNO3 vapor at 200°C to obtain O-functionalized CNTs (OCNTs). The OCNTs were treated in ammonia at 400°C to obtain N-doped CNTs (NCNTs). Highly dispersed FeOx nanoparticles were subsequently deposited by chemical vapor deposition from ferrocene under oxidizing conditions. The obtained FeOx/OCNT and FeOx/NCNT samples were allowed to sinter at 500°C under flowing helium, hydrogen, or ammonia. The samples were studied by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. A significant increase in particle size and a decrease in Fe surface atomic concentration were observed in all the sintered samples. The sintering on OCNTs was more severe than on NCNTs, which can be attributed to stronger metal-substrate interactions and a higher amount of surface defects on NCNTs. The applied gas atmosphere had a substantial influence on the sintering behavior of the nanoparticles: treatment in helium led to the growth of particles and a significant widening of particle size distributions, whereas treatment in hydrogen or ammonia resulted in the growth of particles, but not in the widening of particle size distributions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2012 • 68
    Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction
    Sun, Z. and Masa, J. and Liu, Z. and Schuhmann, W. and Muhler, M.
    CHEMISTRY - A EUROPEAN JOURNAL. Volume: 18 (2012)
    view abstract10.1002/chem.201103253

    A high-yielding exfoliation of graphene at high concentrations in aqueous solutions is critical for both fundamental study and future applications. Herein, we demonstrate the formation of stable aqueous dispersions of pristine graphene by using the surfactant sodium taurodeoxycholate under tip sonication at concentrations of up to 7.1 mg mL -1. TEM showed that about 8 % of the graphene flakes consisted of monolayers and 82 % of the flakes consisted of less than five layers. The dispersions were stable regardless of freezing (-20 °C) or heat treatment (80 °C) for 24 h. The concentration could be significantly improved to about 12 mg mL -1 by vacuum-evaporation of the dispersions at ambient temperature. The as-prepared graphene dispersions were readily cast into conductive films and were also processed to prepare Pt/graphene nanocomposites that were used as highly active electrocatalysts for the oxygen-reduction reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2012 • 67
    CNTs grown on oxygen-deficient anatase TiO 2-δ as high-rate composite electrode material for lithium ion batteries
    Ventosa, E. and Chen, P. and Schuhmann, W. and Xia, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 25 (2012)
    view abstract10.1016/j.elecom.2012.09.031

    A CNTs-TiO 2-δ composite consisting of carbon nanotubes (CNTs) grown by catalytic chemical vapor deposition on oxygen-deficient titanium dioxide (TiO 2-δ) nanoparticles was synthesized and investigated as high-rate negative electrode material for Li-ion batteries. An initial reversible capacity of 185 mAhg - 1 was obtained at C/2, with an initial irreversible loss of 15%. The composite showed a high stability upon cycling, with 92% retention of the capacity after 37 cycles, and good high rate capability, with a capacity of 102 mAhg - 1 at 10C. The performance of the CNTs-TiO 2-δ composite was compared to that of pristine commercial TiO 2 and to that of oxygen-deficient TiO 2 - δwith the aim of identifying the source of the improvement. Both TiO 2-δ and CNTs network were found to contribute to the enhanced electrochemical performance of CNTs-TiO 2-δ composite. © 2012 Elsevier B.V.

  • 2012 • 66
    Gas phase oxidation as a tool to introduce oxygen containing groups on metal-loaded carbon nanofibers
    Gosselink, R.W. and Van Den Berg, R. and Xia, W. and Muhler, M. and De Jong, K.P. and Bitter, J.H.
    CARBON. Volume: 50 (2012)
    view abstract10.1016/j.carbon.2012.05.020

    Oxygen containing groups were introduced, onto carbon nanofibers (CNFs) that were previously loaded with palladium, using HNO 3 vapor. Using traditional liquid-phase oxidations this is not possible due to severe metal leaching. For the samples oxidized using HNO 3 vapor temperature programmed desorption and X-ray photoelectron spectroscopy revealed the presence of two major classes of oxygen containing groups, i.e. carboxylic acid groups which are thermally stable up to 300 °C and less acidic (e.g. phenol) and basic groups which were stable up to 700 °C. The amount of acidic oxygen containing groups introduced by this gas-phase treatment ranged from 0.1 to 0.3 mmol/g, as determined by titration. The latter amount is comparable to that introduced by traditional liquid-phase treatment in 65% HNO 3 on bare CNFs. Transmission electron microscopy and H 2-chemisorption measurements show a gradual increase of the average metal particle size from 2.1 nm for the starting Pd/CNF to 4.5 nm for Pd/CNF treated for 75 h in HNO 3 vapor indicating that the extent of sintering with gas-phase treatment is limited. Elemental analysis showed that no leaching occurred upon gas-phase oxidation, whereas 90% of the metal was lost with a liquid-phase reflux HNO 3 treatment. © 2012 Elsevier Ltd. All rights reserved.

  • 2012 • 65
    Scanning electrochemical microscopy (SECM) in proton exchange membrane fuel cell research and development
    Schuhmann, W. and Bron, M.
    POLYMER ELECTROLYTE MEMBRANE AND DIRECT METHANOL FUEL CELL TECHNOLOGY: IN SITU CHARACTERIZATION TECHNIQUES FOR LOW TEMPERATURE FUEL CELLS. Volume: (2012)
    view abstract10.1016/B978-1-84569-774-7.50013-X

    Scanning electrochemical microscopy (SECM) has been established as a powerful technique in fuel cell catalysis research and development. This chapter presents the principles of SECM with a focus on the application of the various SECM modes to the investigation of fuel cell electrocatalysts. For the two most important reactions, namely hydrogen oxidation and oxygen reduction, an overview is given of kinetic studies as well as efforts in catalyst development and testing. Other reactions such as methanol oxidation and hydrogen peroxide formation and the application of SECM to fuel cell electrodes are also discussed. © 2012 Woodhead Publishing Limited All rights reserved.

  • 2012 • 64
    Enzymatic fuel cells: Recent progress
    Leech, D. and Kavanagh, P. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 84 (2012)
    view abstract10.1016/j.electacta.2012.02.087

    There is an increasing interest in replacing non-selective metal catalysts, currently used in low temperature fuel cells, with enzymes as catalysts. Specific oxidation of fuel and oxidant by enzymes as catalysts yields enzymatic fuel cells. If the catalysts can be immobilised at otherwise inert anode and cathode materials, this specificity of catalysis obviates the requirement for fuel cell casings and membranes permitting fuel cell configurations amenable to miniaturisation to be adopted. Such configurations have been proposed for application to niche areas of power generation: powering remotely located portable electronic devices, or implanted biomedical devices, for example. We focus in this review on recent efforts to improve electron transfer between the enzymes and electrodes, in the presence or absence of mediators, with most attention on research aimed at implantable or semi-implantable enzymatic fuel cells that harvest the body's own fuel, glucose, coupled to oxygen reduction, to provide power to biomedical devices. This ambitious goal is still at an early stage, with device power output and stability representing major challenges. A comparison of performance of enzymatic fuel cell electrodes and assembled fuel cells is attempted in this review, but is hampered in general by lack of availability of, and conformity to, standardised testing and reporting protocols for electrodes and cells. We therefore highlight reports that focus on this requirement. Ultimately, insight gained from enzymatic fuel cell research will lead to improved biomimetics of enzyme catalysts for fuel cell electrodes. These biomimetics will mimic enzyme catalytic sites and the structural flexibility of the protein assembly surrounding the catalytic site. © 2012 Elsevier Ltd.

  • 2012 • 63
    Combined high resolution Scanning Kelvin probe - Scanning electrochemical microscopy investigations for the visualization of local corrosion processes
    Maljusch, A. and Senöz, C. and Rohwerder, M. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 82 (2012)
    view abstract10.1016/j.electacta.2012.05.134

    An integrated SKP-SECM system was successfully optimised with respect to improved lateral resolution. An aluminum alloy was synthesised by solidification of a liquid melt of pure Al, Cu and Mg metal powders in order to visualize single S-phase intermetallic particles (IMPs) using a newly proposed "glass free" SKP-SECM tip. The obtained IMPs were randomly distributed in the solid solution matrix of the alloy and their average chemical composition was in agreement with that of S-phase IMPs in commercially available AA2024-T351 alloys. The S-phase IMPs were localized in the SKP mode of the SKP-SECM system. The increased electrochemical activity of the S-phase IMPs was visualized using the feedback mode of SECM and the in situ consumption of O 2 on the surface of a single S-phase IMP was visualized in the redox-competition mode of the SECM using the same tip. Thus, the local Volta potential difference obtained in the SKP mode could be overlaid with the local electrochemical activity for O 2 reduction. © 2012 Elsevier Ltd.

  • 2012 • 62
    Nitrogen- and Oxygen-Functionalized Multiwalled Carbon Nanotubes Used as Support in Iron-Catalyzed, High-Temperature Fischer-Tropsch Synthesis
    Schulte, H.J. and Graf, B. and Xia, W. and Muhler, M.
    CHEMCATCHEM. Volume: 4 (2012)
    view abstract10.1002/cctc.201100275

    High-temperature Fischer-Tropsch synthesis for the production of short-chain olefins over iron catalysts supported on multiwalled carbon nanotubes (CNTs) was investigated under industrially relevant conditions (340°C, 25bar, H 2/CO=1) to elucidate the influence of nitrogen and oxygen functionalization of the CNTs on the activity, selectivity, and long-term stability. Surface functionalization of the CNTs was achieved by means of a gas-phase treatment using nitric acid vapor at 200°C for oxygen functionalization (O-CNTs) and ammonia at 400°C for the subsequent nitrogen doping (N-CNTs). Ammonium iron citrate impregnation followed by calcination was applied for the deposition of iron nanoparticles with particle sizes below 9nm. Subsequent to reduction in pure H 2 at 380°C, the Fe/N-CNT and Fe/O-CNT catalysts were applied in Fischer-Tropsch synthesis, in which they showed comparable initial conversion values with an excellent olefin selectivity [S(C 3-C 6)>85%] and low chain growth probability (α≤0.5). TEM analysis of the used catalysts detected particle sizes of 23 and 26nm on O-CNTs and N-CNTs, respectively, and Fe 5C 2 was identified as the major phase by using XRD, with only traces of Fe 3O 4. After 50h time on stream under steady-state conditions, an almost twofold higher activity compared to the Fe/O-CNT catalysts had been maintained by the Fe/N-CNT catalysts, which are considered excellent Fischer-Tropsch catalysts for the production of short-chain olefins owing to their high activity, high selectivity to olefins, low chain growth probability, and superior long-term stability. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2011 • 61
    Spectroscopic characterization of an atmospheric pressure μ-jet plasma source
    Bibinov, N. and Knake, N. and Bahre, H. and Awakowicz, P. and Schulz-Von Der Gathen, V.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 44 (2011)
    view abstract10.1088/0022-3727/44/34/345204

    A new method for determination of plasma parameters under atmospheric pressure conditions is formulated and applied for characterization of a radio-frequency μ-jet plasma source using He/O2 mixture. By applying absolutely calibrated optical emission spectroscopy and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined. The steady-state concentrations of different species such as oxygen atom and ozone in the plasma channel and in the effluent of the plasma source are calculated using measured plasma parameters and gas temperature. On the other hand, spatial distribution of steady-state densities of these species are measured using emission and absorption spectroscopy. A comparison of the results thus obtained and the validation of the new method against two-photon absorption laser-induced fluorescence spectroscopy measurements are discussed. In addition, the influence of the surface processes and gas flow regime on the loss of the active species in the plasma source are discussed. © 2011 IOP Publishing Ltd.

  • 2011 • 60
    Visualization and functions of surface defects on carbon nanotubes created by catalytic etching
    Xia, W. and Yin, X. and Kundu, S. and Sánchez, M. and Birkner, A. and Wöll, C. and Muhler, M.
    CARBON. Volume: 49 (2011)
    view abstract10.1016/j.carbon.2010.09.025

    Surface defects were created on carbon nanotubes (CNTs) by catalytic steam gasification or catalytic etching with iron as catalysts. The structure and morphology of the etched CNTs were studied by transmission electron microscopy (TEM) and scanning tunneling microscopy (STM). The electronic structure of the etched CNTs was investigated by ultraviolet photoelectron spectroscopy (UPS). The etched CNTs were treated by nitric acid to obtain oxygen-containing functional groups. The amount and the thermal stability of these groups were studied by temperature-resolved X-ray photoelectron spectroscopy (XPS). Temperature-programmed desorption with ammonia as a probe molecule (NH 3-TPD) was employed to investigate the interaction of the surface defects with foreign molecules in gas phase. TEM and STM studies disclosed the presence of surface defects especially edge planes on the etched CNTs. Etching of CNTs led to a less pronounced p-π band than the as-is CNTs, as evidenced by UPS studies. The XPS and NH 3-TPD studies demonstrated that the defects on the CNTs enhanced the reactivity of the exposed surfaces allowing obtaining a higher degree of oxygen functionalization and more active adsorption sites. © 2010 Elsevier Ltd. All rights reserved.

  • 2011 • 59
    Partial oxidation of methane on Pt-supported lanthanide doped ceria-zirconia oxides: Effect of the surface/lattice oxygen mobility on catalytic performance
    Sadykov, V.A. and Sazonova, N.N. and Bobin, A.S. and Muzykantov, V.S. and Gubanova, E.L. and Alikina, G.M. and Lukashevich, A.I. and Rogov, V.A. and Ermakova, E.N. and Sadovskaya, E.M. and Mezentseva, N.V. and Zevak, E.G. and Veniaminov, S.A. and Muhler, M. and Mirodatos, C. and Schuurman, Y. and Van Veen, A.C.
    CATALYSIS TODAY. Volume: 169 (2011)
    view abstract10.1016/j.cattod.2010.10.098

    Partial oxidation of methane into syngas at short contact times (5-15 ms) was studied in both steady-state and transient modes at temperatures up to 850 °C in realistic feeds (CH4 content up to 20%, CH 4/O2 = 2) with a minimum impact of mass and heat transfer for structured catalysts carrying Pt/Ln0.3Ce0.35Zr 0.35O2-y (Ln = La, Pr, Gd) as thin layers on walls of corundum channel substrates. Oxygen mobility and reactivity of the active phase were characterized by oxygen isotope heteroexchange, temperature-programmed O2 desorption and CH4 reduction, isothermal pulse reduction by methane with wide variation of CH4 concentrations and TAP pulse studies. Experimental data point towards a selective oxidation of methane into syngas via a direct route with oxygen-assisted methane activation. This mechanistic feature is related to the strong Pt-support interaction stabilizing highly dispersed oxidic Pt species less active in CH4 and syngas combustion than metallic Pt clusters. Support activates O2 molecules and supplies active oxygen species to Pt sites. A high rate of oxygen diffusion on the surface and in the bulk of the support and Pt-support oxygen spillover stabilizes Pt in a well dispersed partially oxidized state while preventing coking at high concentrations of CH4 in the feed. © 2010 Elsevier B.V. All rights reserved.

  • 2011 • 58
    Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles
    Greulich, C. and Diendorf, J. and Geßmann, J. and Simon, T. and Habijan, T. and Eggeler, G. and Schildhauer, T.A. and Epple, M. and Köller, M.
    ACTA BIOMATERIALIA. Volume: 7 (2011)
    view abstract10.1016/j.actbio.2011.05.030

    Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30 μg ml -1 silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15 μg ml -1 was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25 μg ml -1 and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 2011 • 57
    A chloride resistant high potential oxygen reducing biocathode based on a fungal laccase incorporated into an optimized Os-complex modified redox hydrogel
    Beyl, Y. and Guschin, D.A. and Shleev, S. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 13 (2011)
    view abstract10.1016/j.elecom.2011.02.024

    A chloride-resistant high-potential biocathode based on Trametes hirsuta laccase incorporated into an optimized Os-complex modified redox hydrogel (80 mV potential difference to the T1 Cu) is described. The bioelectrocatalytic activity towards O 2 reduction is due to an intimate access of the polymer-bound Os-complex to the T1 Cu site. The chloride resistance of the biocathode is due to the tight binding of the polymer-bound Os-complex to the T1 Cu site. © 2011 Elsevier B.V.

  • 2011 • 56
    Structural characteristics and catalytic performance of alumina-supported nanosized ceria-lanthana solid solutions
    Katta, L. and Thrimurthulu, G. and Reddy, B.M. and Muhler, M. and Grünert, W.
    CATALYSIS SCIENCE AND TECHNOLOGY. Volume: 1 (2011)
    view abstract10.1039/c1cy00312g

    Alumina-supported nanosized ceria-lanthana solid solutions (CeO 2-La2O3/Al2O3 (CLA) = 80:20:100 mol% based on oxides) were synthesized by a modified deposition coprecipitation method from ultra-high dilute aqueous solutions. The synthesized materials were subjected to various calcination temperatures from 773 to 1073 K to understand the surface structure and the thermal stability. Structural and redox properties were deeply investigated by different characterization techniques, namely, X-ray diffraction (XRD), Raman spectroscopy (RS), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR), and Brunauer-Emmett-Teller (BET) surface area. The catalytic efficiency was evaluated for CO oxidation at normal atmospheric pressure. BET surface area measurements revealed that synthesized samples exhibit reasonably high specific surface area. As revealed by XRD measurements, samples maintain structural integrity up to 1073 K without any disproportionation of phases. XPS results suggested that there is no significant change in the Ce3+ amount during thermal treatments due to the absence of undesirable cerium aluminate formation. A significant number of oxygen vacancies were confirmed from Raman and UV-vis DRS measurements. The CLA 773 sample exhibited superior CO oxidation activity. The better activity of the catalyst was proved to be due to a high dispersion in the form of nanosized ceria-lanthana solid solutions over the alumina support, facile reduction, and a high oxygen storage capacity. © The Royal Society of Chemistry 2011.

  • 2011 • 55
    Enhanced characteristics of HVOF-sprayed MCrAlY bond coats for TBC applications
    Rajasekaran, B. and Mauer, G. and Vaßen, R.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 20 (2011)
    view abstract10.1007/s11666-011-9668-3

    This study is focused on the variation of the microstructures of different CoNiCrAlY bond coats sprayed by the high-velocity oxy-fuel (HVOF) process for thermal barrier coating (TBC) applications. Three different size fractions of the CoNiCrAlY bond coat powder have been considered for this investigation: AMDRY 9951 (5-37 μm), AMDRY 9954 (11-62 lm), and AMDRY 995C (45-75 lm). The influence of HVOF process parameters and process conditions have been studied in detail to achieve quality bond coats in terms of low porosity level, low oxygen content, and high surface roughness. The results have been promising and have shown that dense bond coats with low porosity can be achieved by HVOF spraying through the appropriate selection of powder size and process parameters. Importantly, HVOF bond coats appear to be competitive to VPS bond coats in terms of its oxygen content and high surface roughness. © ASM International.

  • 2011 • 54
    Quantitative photoacoustic blood oxygenation measurement of whole porcine blood samples using a multi-wavelength semiconductor laser system
    Friedrich, C. S. and Mienkina, M. P. and Brenner, C. and Gerhardt, N. C. and Jorger, M. and Strauss, A. and Beckmann, M. F. and Schmitz, G. and Hofmann, M. R.
    DIFFUSE OPTICAL IMAGING III. Volume: 8088 (2011)
    view abstract10.1117/12.889682

    We present a photoacoustic measurement system based on semiconductor lasers for blood oxygenation measurements. It permits to use four different optical wavelengths (650nm, 808nm, 850nm, 905nm) to generate photoacoustic signals. As the optical extinction coefficient of oxygenated hemoglobin and deoxygenated hemoglobin is different at specific wavelengths, a blood oxygenation measurement by a multi-wavelength photoacoustic laser system is feasible. Especially at 650nm, the clear difference between the extinction coefficients of the two hemoglobin derivates permits to determine the blood oxygenation in combination with other near infrared wavelengths. A linear model based on tabulated values of extinction coefficients for fully oxygenated and fully deoxygenated hemoglobin is presented. We used heparin stabilized whole porcine blood samples to model the optical behavior of human blood, as the optical absorption behavior of porcine hemoglobin does not differ significantly from human hemoglobin. To determine the real oxygen saturation values of the blood samples, we measured the partial oxygen pressure with an IRMA Trupoint Blood Analysis System. The oxygen saturation values were calculated from a dissociation curve for porcine blood. The results of the photoacoustic measurement are in qualitatively good agreement with the predicted linear model. Further, we analyze the abilities and the limitations of quantitative oxygenation measurements.

  • 2011 • 53
    Spatially resolved simulation of a radio-frequency driven micro-atmospheric pressure plasma jet and its effluent
    Hemke, T. and Wollny, A. and Gebhardt, M. and Brinkmann, R.P. and Mussenbrock, T.
    JOURNAL OF PHYSICS D: APPLIED PHYSICS. Volume: 44 (2011)
    view abstract10.1088/0022-3727/44/28/285206

    Radio-frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The radio-frequency driven micro-atmospheric pressure plasma jet (μAPPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of the μAPPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O3 and O2(1Δ)). The simulation results are verified by comparison with experimental data. © 2011 IOP Publishing Ltd.

  • 2011 • 52
    High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction
    Schäfer, D. and Mardare, C. and Savan, A. and Sanchez, M.D. and Mei, B. and Xia, W. and Muhler, M. and Ludwig, Al. and Schuhmann, W.
    ANALYTICAL CHEMISTRY. Volume: 83 (2011)
    view abstract10.1021/ac102303u

    Thin film metal oxide material libraries were prepared by sputter deposition of nanoscale Ti/Nb precursor multilayers followed by ex situ oxidation. The metal composition was varied from 6 at.% Nb to 27 at.% Nb. Additionally, thin wedge-type layers of Pt with a nominal thickness gradient from 0 to 5 nm were sputter-deposited on top of the oxides. The materials libraries were characterized with respect to metallic film composition, oxide thickness, phases, electrical conductivity, Pt thickness, and electrochemical activity for the oxygen reduction reaction (ORR). Electrochemical investigations were carried out by cyclic voltammetry using an automated scanning droplet cell. For a nominal Pt thickness >1 nm, no significant dependence of the ORR activity on the Pt thickness or the substrate composition was observed. However, below that critical thickness, a strong decrease of the surface-normalized activity in terms of reduction currents and potentials was observed. For such thin Pt layers, the conductivity of the substrate seems to have a substantial impact on the catalytic activity. Results from X-ray photoelectron spectroscopy (XPS) measurements suggest that the critical Pt thickness coincides with the transition from a continuous Pt film into isolated particles at decreasing nominal Pt thickness. In the case of isolated Pt particles, the activity of Pt decisively depends on its ability to exchange electrons with the oxide layer, and hence, a dependence on the substrate conductivity is rationalized. © 2011 American Chemical Society.

  • 2011 • 51
    Probing the Pt Surface for Oxygen Reduction by Insertion of Ag
    Schwamborn, S. and Bron, M. and Schuhmann, W.
    ELECTROANALYSIS. Volume: 23 (2011)
    view abstract10.1002/elan.201000510

    We report on the probing of the Pt surface for oxygen reduction reaction (ORR) by insertion of Ag. Therefore, PtAg bimetallic nanoparticles were prepared by pulse electrodeposition. In a second step, Ag was electro-dissolved in acidic media from the particles under formation of Pt skeleton. The ORR activity of these Pt skeleton depends on two factors: (1) on the surface properties of the Pt-shell and (2) on the electronic as well as geometric influences of the remaining Ag in the particle core. By varying the conditioning procedure prior to measuring the ORR activity, we were able to differentiate between these two effects. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2011 • 50
    Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si(001): Size effects
    Ono, L.K. and Croy, J.R. and Heinrich, H. and Roldan Cuenya, B.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 115 (2011)
    view abstract10.1021/jp204743q

    The changes induced in the structure and chemical state of size-selected Pt nanoparticles (NPs) supported on ultrathin SiO2 films upon exposure to oxygen have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), in situ X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). For low atomic oxygen exposures, chemisorbed oxygen species were detected on all samples. Exposure to higher atomic oxygen coverages at room temperature leads to the formation and stabilization of PtOx species (PtO2 and PtO). On all samples, a two-step thermal decomposition process was observed upon annealing in ultrahigh vacuum: PtO2 → PtO → Pt. For NPs in the 2-6 nm range, the NP size was found to affect the strength of the O binding. Contrary to the case of Pt(111), where no oxides were detected above 700 K, 10-20% PtO was detected on the NP samples via XPS at the same temperature, suggesting the presence of strongly bound oxygen species. In addition, for identical atomic oxygen exposures, decreasing the NP size was found to favor their ability to form oxides. Interestingly, regardless of whether the desorption of chemisorbed oxygen species or that of oxygen in PtOx species was considered, our TPD data revealed higher O2-desorption temperatures for the Pt NPs as compared with the Pt(111) surface. Furthermore, a clear size-dependent trend was observed, with an increase in the strength of the oxygen bonding with decreasing NP size. © 2011 American Chemical Society.

  • 2011 • 49
    Evaluation of homoleptic guanidinate and amidinate complexes of gadolinium and dysprosium for MOCVD of rare-earth nitride thin films
    Thiede, T.B. and Krasnopolski, M. and Milanov, A.P. and De Los Arcos, T. and Ney, A. and Becker, H.-W. and Rogalla, D. and Winter, J. and Devi, A. and Fischer, R.A.
    CHEMISTRY OF MATERIALS. Volume: 23 (2011)
    view abstract10.1021/cm102840v

    Metal-organic chemical vapor deposition (MOCVD) of thin films of two representative rare-earth nitrides is reported here for the first time. Four homoleptic, all-nitrogen-coordinated, rare-earth (RE) complexes were evaluated as precursors for the respective nitride thin film materials. Two guanidinato complexes [RE{(iPrN)2C(NMe2)}3] [RE = Gd (1), Dy (2)] and two amidinato complexes [RE{(iPrN) 2CMe}3] [RE = Gd (3), Dy (4)] were compared and used either as single source precursors or together with ammonia for MOCVD of gadolinium nitride (GdN) and dysprosium nitride (DyN), respectively. The thermal properties of the precursors were studied and the fragmentation patterns were characterized by high-resolution electron impact-mass spectrometry (HR EI-MS). The obtained nitride films were investigated using a series of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), nuclear reaction analysis (NRA), Rutherford backscattering (RBS), and X-ray photoelectron spectroscopy (XPS). The films contain preferentially oriented grains of fcc-GdN and DyN and are contaminated with small amounts of carbon and oxygen (significantly below 10 at.-% in the best cases). The temperature-dependent magnetic properties of the films, as measured using a superconducting quantum interference device (SQUID), suggest the existence of small ferromagnetic grains of the rare-earth nitrides that exhibit superparamagnetism. Despite the chemical and structural similarity of the guanidinato and amidinato complexes (1-4), a distinctly different behavior as MOCVD precursors was found for 1 and 2, compared with that for 3 and 4. While the guanidinates operate well as single-source precursors (SSPs), the amidinates are not suited at all as SSPs, but give very good nitride films when used in the presence of ammonia. This characteristic behavior was correlated with the different fragmentation mechanisms, as revealed by EI-MS. © 2011 American Chemical Society.

  • 2011 • 48
    Atomic-scale distribution of impurities in cuinse2-based thin-film solar cells
    Cojocaru-Miredin, O. and Choi, P. and Wuerz, R. and Raabe, D.
    ULTRAMICROSCOPY. Volume: 111 (2011)
    view abstract10.1016/j.ultramic.2010.12.034

    Atom Probe Tomography was employed to investigate the distribution of impurities, in particular sodium and oxygen, in a cuinse2-based thin-film solar cell. It could be shown that sodium, oxygen, and silicon diffuse from the soda lime glass substrate into the cuinse2 film and accumulate at the grain boundaries. Highly dilute concentrations of sodium and oxygen were measured in the bulk. Selenium was found to be depleted at the grain boundaries. These observations could be confirmed by complementary energy dispersive X-ray spectroscopy studies. Our results support the model proposed by Kronik et al. (1998) [1], which explains the enhanced photovoltaic efficiency of sodium containing cuinse2 solar cells by the passivation of selenium vacancies at grain boundaries. © 2011 Elsevier B.V.

  • 2011 • 47
    Characterization of grain boundaries in Cu(In,Ga)Se 2 films using atom-probe tomography
    Cojocaru-Mirédin, O. and Choi, P.-P. and Abou-Ras, D. and Schmidt, S.S. and Caballero, R. and Raabe, D.
    IEEE JOURNAL OF PHOTOVOLTAICS. Volume: 1 (2011)
    view abstract10.1109/JPHOTOV.2011.2170447

    This paper discusses the advantages of pulsed laser atom-probe tomography (APT) to analyze Cu(In,Ga)Se 2-based solar cells. Electron backscatter diffraction (EBSD) was exploited for site-specific preparation of APT samples at selected Cu(In,Ga)Se 2 grain boundaries. This approach is very helpful not only to determine the location of grain boundaries but also to classify them as well. We demonstrate that correlative transmission electron microscopy (TEM) analyses on atom-probe specimens enable the atom-probe datasets to be reconstructed with high accuracy. Moreover, EBSD and TEM can be very useful to obtain complementary information about the crystal structure in addition to the compositional analyses. The local chemical compositions at grain boundaries of a solar grade Cu(In,Ga)Se 2 film are presented here. Na, K, and O impurities are found to be segregated at grain boundaries. These impurities most likely diffuse from the soda lime glass substrate into the absorber layer during cell fabrication and processing. Based on the experimental results, we propose that Na, K, and O play an important role in the electrical properties of grain boundaries in Cu(In,Ga)Se 2 thin films for solar cells. © 2011 IEEE.

  • 2011 • 46
    Polythiophene-assisted vapor phase synthesis of carbon nanotube-supported rhodium sulfide as oxygen reduction catalyst for HCl electrolysis
    Jin, C. and Nagaiah, T.C. and Xia, W. and Bron, M. and Schuhmann, W. and Muhler, M.
    CHEMSUSCHEM. Volume: 4 (2011)
    view abstract10.1002/cssc.201000315

    Rhodium Drive: Carbon nanotube-supported rhodium sulfide electrocatalysts are prepared by sequential chemical vapor deposition of iron, controlled vapor phase polymerization of thiophene, and finally impregnation of the rhodium precursor and pyrolysis. The electrocatalysts are applied in the oxygen reduction reaction under HCl electrolysis conditions. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2011 • 45
    Atomic vapor deposition approach to In 2O 3 thin films
    Hellwig, M. and Parala, H. and Cybinksa, J. and Barreca, D. and Gasparotto, A. and Niermann, B. and Becker, H.-W. and Rogalla, D. and Feydt, J. and Irsen, S. and Mudring, A.-V. and Winter, J. and Fischer, R.A. and Devi, A.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY. Volume: 11 (2011)
    view abstract10.1166/jnn.2011.5024

    In 2O 3 thin films were grown by atomic vapor deposition (AVD) on Si(100) and glass substrates from a tris-guanidinate complex of indium [In(NiPr 2guanid) 3] under an oxygen atmosphere. The effects of the growth temperature on the structure, morphology and composition of In 2O 3 films were investigated. X-ray diffraction (XRD) measurements revealed that In 2O 3 films deposited in the temperature range 450-700°C crystallised in the cubic phase. The film morphology, studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), was strongly dependent on the substrate temperature. Stoichiometric In 2O 3 films were formed under optimised processing conditions as was confirmed by X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), as well as by Rutherford backscattering spectrometry (RBS). Finally, optical properties were investigated by photoluminescence (PL) measurements, spectroscopic ellipsometry (SE) and optical absorption. In 2O 3 films grown on glass exhibited excellent transparency (≈90%) in the Visible (Vis) spectral region. Copyright © 2011 American Scientific Publishers All rights reserved.

  • 2011 • 44
    CO oxidation with Au/TiO2 aggregates encapsulated in the mesopores of MCM-48: Model studies on activation, deactivation and metal-support interaction
    Van Den Berg, M.W.E. and De Toni, A. and Bandyopadhyay, M. and Gies, H. and Grünert, W.
    APPLIED CATALYSIS A: GENERAL. Volume: 391 (2011)
    view abstract10.1016/j.apcata.2010.06.022

    The activation of Au/TiO2 clusters encapsulated in MCM-48 and related poisoning phenomena were studied. With these catalysts, which contain extremely disperse Au particles (average size below 1 nm still after exposure to 473 K according to EXAFS), light-off temperatures of 250-280 K were obtained upon activation by precursor reduction in a net oxidizing CO/O2 feed, which is well comparable with state of the art Au/TiO2 catalysts. This activation was, however, found to be superimposed by parallel poisoning. In an operando XAFS study with catalyst batches containing Au(III) precursor species of different reducibility for unknown reasons, it was observed that the final activity was strongly influenced by the precursor reduction. Apparently, high activities were achieved by Au particles formed at low temperatures making contact with the clean support surface. Delayed Au(III) reduction produced particles of similar size but much lower activity, probably due to predominant contact with poisoned support species. The catalysts were most active right after an initial incomplete reduction of the Au(III) precursor and deactivated at higher temperature despite further Au(0) formation. However, as complete reduction of Au ions did not cause breakdown of CO oxidation activity, Au ions do not seem to be a part of the active site. The poisoning could be effectively removed by an inert gas treatment at temperatures up to 673 K, which resulted in light-off temperatures down to 225 K. Turnover frequencies derived for this state agree with data published recently for sub-nanometer bilayered Au particles, which supports the importance of sub-nanometer particles for CO oxidation over Au catalysts. From the absence of significant contributions from support oxygen in the Au LIII EXAFS spectra and of Au-derived signals in Ti K EXAFS spectra of reduced catalysts, it was concluded that there was no ordered relation between metal clusters and support surface, which appears therefore to be irrelevant for CO oxidation. © 2010 Elsevier B.V.

  • 2011 • 43
    Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures
    Xia, W. and Masa, J. and Bron, M. and Schuhmann, W. and Muhler, M.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 13 (2011)
    view abstract10.1016/j.elecom.2011.03.018

    A straight-forward method for the synthesis of metal-free catalysts for oxygen reduction by thermal treatment of a mixture of poly(3,5-pyridine) with carbon black in helium is reported. The catalyst was characterized by X-ray diffraction and photoelectron spectroscopy, cyclic voltammetry and rotating disk electrode measurements. The new catalyst exhibited remarkable activity similar to Pt-based catalysts in alkaline media. © 2011 Elsevier B.V. All Rights Reserved.

  • 2011 • 42
    Scanning electrochemical microscopy for investigation of multicomponent bioelectrocatalytic films
    Dobrzeniecka, A. and Zeradjanin, A. and Masa, J. and Stroka, J. and Goral, M. and Schuhmann, W. and Kulesza, P.J.
    ECS TRANSACTIONS. Volume: 35 (2011)
    view abstract10.1149/1.3646486

    Scanning electrochemical microscopy in the redox competition mode (RC-SECM) is proposed as an useful technique for local investigation of the electrocatalytic activity of different catalysts towards the oxygen reduction reaction (ORR) with simultaneous detection of the produced undesirable intermediate hydrogen peroxide. We have used cobalt porphyrin dispersed in a multiwalled carbon nanotubes (MWCNTs) matrix as a model electrocatalyst for the predominant two-electron reduction of oxygen to hydrogen peroxide. Furthermore, Prussian Blue or horseradish peroxidase were used as catalysts for the further reduction of hydrogen peroxide to water. The properties of each component of the film were examined along with their potential interactions with the other components. As a result an efficient electrocatalyst for oxygen reduction at physiological pH could be obtained. ©The Electrochemical Society.

  • 2011 • 41
    Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels
    Badura, A. and Guschin, D. and Kothe, T. and Kopczak, M.J. and Schuhmann, W. and Rögner, M.
    ENERGY AND ENVIRONMENTAL SCIENCE. Volume: 4 (2011)
    view abstract10.1039/c1ee01126j

    Photosystem 1 (PS1) catalyzes the light driven translocation of electrons in the process of oxygenic photosynthesis. Isolated PS1 was immobilised on a gold electrode surface via an Os complex containing redox polymer hydrogel which simultaneously is used as immobilisation matrix and as electron donor for PS1. On addition of methyl viologen as sacrificial electron acceptor, a catalytic photocurrent with densities of up to 29 μA cm -2 at a light intensity of 1.8 mW cm -2 was observed upon illumination - equivalent to an incident photon to carrier efficiency (IPCE) of 3.1%. The strong dependence of the catalytic reaction on the light intensity and the dissolved oxygen concentration indicates that a significant photocurrent from excited PS1 to the electrode can only be realized in the presence of oxygen. © 2011 The Royal Society of Chemistry.

  • 2011 • 40
    Activation/inhibition effects during the coelectrodeposition of PtAg nanoparticles: Application for ORR in alkaline media
    Schwamborn, S. and Stoica, L. and Schuhmann, W.
    CHEMPHYSCHEM. Volume: 12 (2011)
    view abstract10.1002/cphc.201100029

    PtAg bimetallic nanoparticles for oxygen reduction reaction (ORR) in alkaline media were prepared by pulse electrodeposition (PED). During PED the reduction of Ag + ions predominates, thus an increased Ag content in the co-deposit is accomplished. The mechanism for this anomalous co-deposition was elucidated by potential pulse experiments, which revealed that nuclei formation mainly occurs via the reduction of Pt 2+ ions. The growth of the particles is diffusion controlled leading to the formation of a Ag shell covering a PtAg alloyed region. However, the shell is not growing homogeneously on the PtAg alloy. Hence, regions of the PtAg alloy are exposed, which exhibit an enhanced ORR activity compared to a pure Ag surface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2011 • 39
    Surface reactions as carbon removal mechanism in deposition of silicon dioxide films at atmospheric pressure
    Reuter, R. and Ellerweg, D. and von Keudell, A. and Benedikt, J.
    APPLIED PHYSICS LETTERS. Volume: 98 (2011)
    view abstract10.1063/1.3565965

    The deposition of thin SiO(x)C(y)H(z) or SiO(x)H(y) films by means of an atmospheric pressure microplasma jet with helium/hexamethyldisiloxane (HMDSO)/O(2) mixtures and the surface reactions involving oxygen have been studied. It is shown, that the carbon content in the film can be controlled by choosing the right O(2)/HMDSO ratio in the gas mixture. The microplasma jet geometry and localization of the deposition at a spot of few square millimeters allows studying the role of oxygen in the deposition process. This is done by alternating application of He/HMDSO plasma and He/O(2) plasma to the same deposition area, here achieved by a treatment of a rotating substrate by two jets with above mentioned gas mixtures. It is shown that carbon-free SiOxHy film can be deposited in this way and that surface reaction with oxygen is the main loss mechanism of carbon from the film. (C) 2011 American Institute of Physics. [doi:10.1063/1.3565965]

  • 2011 • 38
    On the evolution of microstructure in oxygen-free high conductivity copper during thermomechanical processing using rotary swaging
    Otto, F. and Frenzel, J. and Eggeler, G.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH. Volume: 102 (2011)
    view abstract10.3139/146.110501

    In the present work, the processing parameters which govern the evolution of microstructure during rotary swaging and intermediate/subsequent heat treatments in copper rods were studied. Copper ingots with an initial diameter of 40 mm were reduced to a final diameter of 11.7 mm by rotary swaging. Processing sequences were applied with different intermediate anneals and various final heat treatments. The resulting microstructures were characterized using orientation imaging microscopy, optical microscopy and hardness measurements. Special emphasis was placed on the evolution of microstructure with respect to the radial and longitudinal position in the rod. Most importantly, microstructural evidence for torsional loading during swaging was found, and a spiral grain morphology was observed. Moreover, localized deformation events were identified and evidence for abnormal grain growth was found. Finally, a combination of swaging and heat treatment parameters was identified which allowed a homogeneous grain structure to be produced. © Carl Hanser Verlag GmbH & Co. KG.

  • 2011 • 37
    Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy
    Noei, H. and Wöll, C. and Muhler, M. and Wang, Y.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 115 (2011)
    view abstract10.1021/jp102751t

    The activation of CO 2 on clean and hydroxylated ZnO nanoparticles has been studied by ultrahigh vacuum FTIR spectroscopy (UHV-FTIRS). Exposing the clean ZnO powder samples to CO 2 at 300 K leads to the formation of a number of carbonate-related bands. A detailed assignment of these bands was carried out using isotope-substitution experiments with C 18O 2. On the basis of vibrational and thermal stability data for ZnO single crystal surfaces, a consistent description of the interaction of CO 2 with ZnO powder particles can be provided: (1) on the mixed-terminated ZnO(101?0) facets, a tridentate carbonate is formed; (2) on the polar, O-terminated (0001?) facets, a bidentate carbonate species is formed via CO 2 activation at oxygen vacancy sites; and (3) additional monodentate or polydentate carbonate species are formed at defect sites such as steps, edges, kinks, and vacancies. The formation of carbonate-related vibrational bands is observed at an exposure temperature as low as 100 K, thus demonstrating the high activity of ZnO nanoparticles with regard to CO 2 activation. © 2010 American Chemical Society.

  • 2011 • 36
    Sterilization of heat-sensitive silicone implant material by low-pressure gas plasma
    Hauser, J. and Esenwein, S.-A. and Awakowicz, P. and Steinau, H.-U. and Köller, M. and Halfmann, H.
    BIOMEDICAL INSTRUMENTATION AND TECHNOLOGY. Volume: 45 (2011)
    view abstract10.2345/0899-8205-45.1.75

    Background: In recent years, plasma treatment of medical devices and implant materials has gained more and more acceptance. Inactivation of microorganisms by exposure to ultraviolet (UV) radiation produced by plasma discharges and sterilization of medical implants and instruments is one possible application of this technique. The aim of this study was to evaluate the effectiveness of this sterilization technique on silicone implant material. Methods: Bacillus atrophaeus spores (106 colony-forming units [CFUs]) were sprayed on the surfaces of 12 silicone implant material samples. Four plasma sets with different gas mixtures (argon [Ar], argon-oxygen [Ar:O 2], argon-hydrogen [Ar:H2] and argon-nitrogen [Ar:N 2]) were tested for their antimicrobial properties. Post-sterilization mechanical testing of the implant material was performed in order to evaluate possible plasma-induced structural damage. Results: The inductively coupled low-pressure plasma technique can achieve fast and efficient sterilization of silicone implant material without adverse materials effects. All four gas mixtures led to a significant spore reduction, and no structural damage to the implant material could be observed.

  • 2011 • 35
    Structure, chemical composition, and reactivity correlations during the in situ oxidation of 2-propanol
    Paredis, K. and Ono, L.K. and Mostafa, S. and Li, L. and Zhang, Z. and Yang, J.C. and Barrio, L. and Frenkel, A.I. and Cuenya, B.R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 133 (2011)
    view abstract10.1021/ja200178f

    Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step toward gaining fundamental insight in catalysis. We report the evolution of the structure and chemical composition of size-selected micellar Pt nanoparticles (∼1 nm) supported on nanocrystalline γ-Al2O3 during the catalytic oxidation of 2-propanol using X-ray absorption fine-structure spectroscopy. Platinum oxides were found to be the active species for the partial oxidation of 2-propanol (< 140 °C), while the complete oxidation (>140 °C) is initially catalyzed by oxygen-covered metallic Pt nanoparticles, which were found to regrow a thin surface oxide layer above 200 °C. The intermediate reaction regime, where the partial and complete oxidation pathways coexist, is characterized by the decomposition of the Pt oxide species due to the production of reducing intermediates and the blocking of O2 adsorption sites on the nanoparticle surface. The high catalytic activity and low onset reaction temperature displayed by our small Pt particles for the oxidation of 2-propanol is attributed to the large amount of edge and corner sites available, which facilitate the formation of reactive surface oxides. Our findings highlight the decisive role of the nanoparticle structure and chemical state in oxidation catalytic reactions. © 2011 American Chemical Society.

  • 2011 • 34
    Integrated scanning kelvin probe-scanning electrochemical microscope system: Development and first applications
    Maljusch, A. and Schönberger, B. and Lindner, A. and Stratmann, M. and Rohwerder, M. and Schuhmann, W.
    ANALYTICAL CHEMISTRY. Volume: 83 (2011)
    view abstract10.1021/ac200953b

    The integration of a scanning Kelvin probe (SKP) and a scanning electrochemical microscope (SECM) into a single SKP-SECM setup, the concept of the proposed system, its technical realization, and first applications are presented and discussed in detail. A preloaded piezo actuator placed in a grounded stainless steel case was used as the driving mechanism for oscillation of a Pt disk electrode as conventionally used in SECM when the system was operated in the SKP mode. Thus, the same tip is recording the contact potential difference (CPD) during SKP scanning and is used as a working electrode for SECM imaging in the redox-competition mode (RC-SECM). The detection of the local CPD is established by amplification of the displacement current at an ultralow noise operational amplifier and its compensation by application of a variable backing potential (V b) in the external circuit. The control of the tip-to-sample distance is performed by applying an additional alternating voltage with a much lower frequency than the oscillation frequency of the Kelvin probe. The main advantage of the SKP-SECM system is that it allows constant distance measurements of the CPD in air under ambient conditions and in the redox-competition mode of the SECM in the electrolyte of choice over the same sample area without replacement of the sample or exchange of the working electrode. The performance of the system was evaluated using a test sample made by sputtering thin Pt and W films on an oxidized silicon wafer. The obtained values of the CPD correlate well with known data, and the electrochemical activity for oxygen reduction is as expected higher over Pt than W. © 2011 American Chemical Society.

  • 2010 • 33
    Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase
    Ackermann, Y. and Guschin, D.A. and Eckhard, K. and Shleev, S. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 12 (2010)
    view abstract10.1016/j.elecom.2010.02.019

    The design of the coordination shell of an Os-complex and its integration within an electrodeposition polymer enables fast electron transfer between an electrode and a polymer entrapped high-potential laccase from the basidiomycete Trametes hirsuta. The redox potential of the Os3+/2+-centre tethered to the polymer backbone (+ 720 mV vs. NHE) is perfectly matching the potential of the enzyme (+ 780 mV vs. NHE at pH 6.5). The laccase and the Os-complex modified anodic electrodeposition polymer were simultaneously precipitated on the surface of a glassy carbon electrode by means of a pH-shift to 2.5. The modified electrode was investigated with respect to biocatalytic O2 reduction to H2O. The proposed modified electrode has potential applications as biofuel cell cathode. © 2010 Elsevier B.V. All rights reserved.

  • 2010 • 32
    Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline
    Jin, C. and Nagaiah, T.C. and Xia, W. and Spliethoff, B. and Wang, S. and Bron, M. and Schuhmann, W. and Muhler, M.
    NANOSCALE. Volume: 2 (2010)
    view abstract10.1039/b9nr00405j

    Nitrogen doping of multi-walled carbon nanotubes (CNTs) was achieved by the carbonization of a polyaniline (PANI) coating. First, the CNTs were partially oxidized with KMnO4 to obtain oxygen-containing functional groups. Depending on the KMnO4 loading, thin layers of birnessite-type MnO2 (10 wt% and 30 wt%) were obtained by subsequent thermal decomposition. CNT-supported MnO2 was then used for the oxidative polymerization of aniline in acidic solution, and the resulting PANI-coated CNTs were finally heated at 550 °C and 850 °C in inert gas. The samples were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. A thin layer of carbonized PANI was observed on the CNT surface, and the surface nitrogen concentration of samples prepared from 30% MnO 2 was found to amount to 7.6 at% and 3.8 at% after carbonization at 550 °C and 850 °C, respectively. These CNTs with nitrogen-containing shell were further studied by electrochemical impedance spectroscopy and used as catalysts for the oxygen reduction reaction. The sample synthesized from 30 wt% MnO2 followed by carbonization at 850 °C showed the best electrochemical performance indicating efficient nitrogen doping. © 2010 The Royal Society of Chemistry.

  • 2010 • 31
    Nanofilm metal layers as vacuum quality sensors
    Mader, S. and Haas, T. and Kunze, U. and Doll, T.
    PROCEDIA ENGINEERING. Volume: 5 (2010)
    view abstract10.1016/j.proeng.2010.09.313

    A monitoring device for vacuum quality is realized by lowest cost single use oxygen sensors for vacuum insulation panels. They use the pressure dependence of oxide layer growth thickness on electrically measured metal nanofUms. These films were manufactured by e-beam evaporation , characterized in terms of resistance change with subsequent modeling of underlying mechanisms.

  • 2010 • 30
    Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering
    Kuschel, T. and von Keudell, A.
    JOURNAL OF APPLIED PHYSICS. Volume: 107 (2010)
    view abstract10.1063/1.3415531

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with this microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS. (C) 2010 American Institute of Physics. [doi:10.1063/1.3415531]

  • 2010 • 29
    Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: Support effects
    Ono, L.K. and Yuan, B. and Heinrich, H. and Roldan Cuenya, B.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 114 (2010)
    view abstract10.1021/jp1086703

    This article presents a systematic study of the formation and thermal stability of Pt oxide species on sizeselected Pt nanoparticles (NPs) supported on SiO2, ZrO2, and TiO2 thin films. The studies were carried out in ultrahigh vacuum (UHV) by temperature-dependent X-ray photoelectron spectroscopy (XPS) measurements and ex situ transmission electron microscopy and atomic force microscopy. The NPs were synthesized by inverse micelle encapsulation and oxidized in UHV at room temperature by an oxygen plasma treatment. For a given particle size distribution, the role played by the NP support on the stability of Pt oxides was analyzed. PtO2 species are formed on all supports investigated after O2-plasma exposure. A two-step thermal decomposition (PtO2 → PtO → Pt) is observed from 300 to 600 K upon annealing in UHV. The stability of oxidized Pt species was found to be enhanced on ZrO2 under annealing treatments in O2. Strong NP/support interactions and the formation of Pt-Ti-O alloys are detected for Pt/TiO2 upon annealing in UHV above 550 K but not under an identical treatment in O2. Furthermore, thermal treatments in both environments above 700 K lead to the encapsulation of Pt by TiOx. The final shape of the micellar Pt NPs is influenced by the type of underlying support as well as by the post-deposition treatment. Spherical Pt NPs are stable on SiO2, ZrO2, and TiO 2 after in situ ligand removal with atomic oxygen at RT. However, annealing in UHV at 1000 K leads to NP flattening on ZrO2 and to the diffusion of Pt NPs into TiO2. The stronger the nature of the NP/support interaction, the more dramatic is the change in the NP shape (TiO2 > ZrO2 > SiO2). © 2010 American Chemical Society.

  • 2010 • 28
    Magnetic coupling mechanisms in particle/thin film composite systems
    Confalonieri, G.A.B. and Szary, P. and Mishra, D. and Benitez, M.J. and Feyen, M. and Lu, A.H. and Agudo, L. and Eggeler, G. and Petracic, O. and Zabel, H.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY. Volume: 1 (2010)
    view abstract10.3762/bjnano.1.12

    Magnetic Γ-Fe 2O 3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a mono layer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanopar-ticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the Γ-Fe 2O 3/Co interface. © 2010 Confalonieri et al.

  • 2010 • 27
    Small gold particles supported on MgFe2O4 nanocrystals as novel catalyst for CO oxidation
    Jia, C.-J. and Liu, Y. and Schwickardi, M. and Weidenthaler, C. and Spliethoff, B. and Schmidt, W. and Schüth, F.
    APPLIED CATALYSIS A: GENERAL. Volume: 386 (2010)
    view abstract10.1016/j.apcata.2010.07.036

    We present the study on the catalytic performance of gold particles supported on spinel type MgFe2O4 nanocrystals (Au/MgFe2O4) which exhibit high activity for low temperature CO oxidation. Using XRD, TEM, XPS and CO titration techniques, we investigated the effect of the pretreatment atmosphere on the structure and catalytic properties of the Au/MgFe2O4 catalyst in CO oxidation. TEM, XPS and XRD showed that the pretreatment atmosphere had a negligible effect on the particle size distribution, chemical states of the gold, and the structure of the support. Among the various pretreated catalysts, O2-Au/MgFe2O4 exhibits superior activity, indicating that pretreatment in oxidative atmosphere induced the high capability of the catalyst to activate CO and supply active oxygen for CO oxidation as confirmed by CO titration experiments. © 2010 Elsevier B.V. All rights reserved.

  • 2010 • 26
    Support effects in the Au-catalyzed CO oxidation - Correlation between activity, oxygen storage capacity, and support reducibility
    Widmann, D. and Liu, Y. and Schüth, F. and Behm, R.J.
    JOURNAL OF CATALYSIS. Volume: 276 (2010)
    view abstract10.1016/j.jcat.2010.09.023

    The oxygen storage capacity (OSC) and its correlation with the activity for the CO oxidation reaction and the reducibility of the support material were investigated for four different metal oxide-supported Au catalysts with similar Au loading and Au particle sizes (Au/Al2O3, Au/TiO 2, Au/ZnO, Au/ZrO2), which were prepared by deposition of pre-formed Au colloids. Temporal Analysis of Products (TAP) reactor measurements show that the OSC and the activity for CO oxidation, measured under identical conditions, differ significantly for these catalysts and are correlated with each other and with the reducibility of the respective support material, pointing to a distinct support effect and a direct participation of the support in the reaction. Activity measurements performed under ambient conditions show a similar trend of the activity as the TAP reactor measurements, supporting that the conclusions drawn from the TAP reactor measurements are valid also under continuous reaction conditions. Moreover, the rapid formation and accumulation of carbon-containing surface species during reaction is demonstrated, which can severely reduce the activity for CO oxidation. Implications of these results on the CO oxidation mechanism over metal oxide-supported catalysts are discussed. © 2010 Elsevier Inc. All rights reserved.

  • 2010 • 25
    Optimization of mesh-based anodes for direct methanol fuel cells
    Chetty, R. and Scott, K. and Kundu, S. and Muhler, M.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. Volume: 7 (2010)
    view abstract10.1115/1.3117605

    Platinum based binary and ternary catalysts were prepared by thermal decomposition onto a titanium mesh and were evaluated for the anodic oxidation of methanol. The binary Pt:Ru catalyst with a composition of 1:1 gave the highest performance for methanol oxidation at 80° C. The effect of temperature and time for thermal decomposition was optimized with respect to methanol oxidation, and the catalysts were characterized by cyclic voltammetry, linear sweep voltammetry, scanning electron microscopy, X-ray diffraction studies, and X-ray photoelectron spectroscopy. The best catalyst was evaluated in a single fuel cell, and the effect of methanol concentration, temperature, and oxygen/air flow was studied. The mesh-based fuel cell, operating at 80°C with 1 mol dm 3 methanol, gave maximum power densities of 38 mWcm -2 and 22 mWcm -2 with 1 bar (gauge) oxygen and air, respectively. © 2010 by ASME.

  • 2010 • 24
    Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO
    Jia, C.-N. and Liu, Y. and Bongard, H. and Schüth, F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 132 (2010)
    view abstract10.1021/ja909351e

    (Figure Presented) The colloidal deposition method was used to prepare Au/Mg(OH)2 (0.7 wt % gold) catalysts with gold particle sizes between 1.5 to 5 nm which exhibited very high activity for CO oxidation with specific rates higher than 3.7 molCO·h-1·g Au-1 even at temperatures as low as -89° C. © 2010 American Chemical Society.

  • 2010 • 23
    Theoretical investigation of the Pt3Al ground state
    Chauke, H.R. and Minisini, B. and Drautz, R. and Nguyen-Manh, D. and Ngoepe, P.E. and Pettifor, D.G.
    INTERMETALLICS. Volume: 18 (2010)
    view abstract10.1016/j.intermet.2009.08.016

    The deleterious low-temperature tetragonal phases in prototypical Pt-based superalloys have variously been reported as taking the tI16-U3Si (DOc), tI16-Ir3Si (DOc′) and tP16-Pt3Ga structure-types in contrast to the high-temperature cubic cP4-Cu3Au (L12) phase. We have investigated the relative stability of these four structure-types at absolute zero by using density functional theory. We find that the ground state of stoichiometric Pt3Al is tP16-Pt3Ga and that the other three lattices are mechanically unstable at absolute zero. Experiments are needed to measure the internal displacement parameters of these three competing tetragonal phases. © 2009 Elsevier Ltd. All rights reserved.

  • 2010 • 22
    Thin and dense ceramic coatings by plasma spraying at very low pressure
    Mauer, G. and Vaßen, R. and Stöver, D.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY. Volume: 19 (2010)
    view abstract10.1007/s11666-009-9416-0

    The very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses <50 μm for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed. © 2009 ASM International.

  • 2010 • 21
    Carbon-stabilized mesoporous MoS2 - Structural and surface characterization with spectroscopic and catalytic tools
    Polyakov, M. and Poisot, M. and Van Den Berg, M.W.E. and Drescher, T. and Lotnyk, A. and Kienle, L. and Bensch, W. and Muhler, M. and Grünert, W.
    CATALYSIS COMMUNICATIONS. Volume: 12 (2010)
    view abstract10.1016/j.catcom.2010.09.011

    Structural and surface properties of carbon-containing mesoporous MoS 2 and of a reference MoS2 were studied with various techniques including XRD, elemental analysis, TEM, XPS, EXAFS, nitrogen physisorption, oxygen chemisorption (OCS), determination of exchangeable surface hydrogen, and kinetic study of test reactions like ethene hydrogenation and H2/D2 exchange. The study was made before and after use of these catalysts in the hydrodesulfurization of dibenzothiophene. The microstructure of carbon-stabilized MoS2 is characterized by nanoslabs of 2 nm average stacking height embedded in an amorphous matrix with a very broad pore-size distribution. Thermal stress induced a collapse of the microporous structure leading to the formation of mainly mesopores. The carbon is well-distributed over the bulk, without any signature of carbide species detected neither in XPS nor in EXAFS measurements. The activity patterns of both materials (related to the OCS capacity) were similar despite the differing sulfur content, with the carbon-stabilized MoS2 being more sulfur deficient. This suggests that the catalytic properties of the latter material were caused by near-stoichiometric MoS2 apparently present in the nanoslabs, whereas the sulfur vacancies in the sulfur-deficient amorphous phase were blocked by strongly adsorbed carbon residues. Interestingly, the HDS reaction did not cause significant changes of the properties of the carbon-stabilized MoS2. Conversely, the reference MoS2 was strongly activated, in particular with respect to ethene hydrogenation, which can be explained by a pronounced sulfur loss during the HDS reaction, without significant site blockage by the coke deposited. © 2010 Elsevier B.V. All rights reserved.

  • 2010 • 20
    Carbon nanotube-supported sulfided Rh catalysts for the oxygen reduction reaction
    Jin, C. and Xia, W. and Guo, J. and Nagaiah, T.C. and Bron, M. and Schuhmann, W. and Muhler, M.
    STUDIES IN SURFACE SCIENCE AND CATALYSIS. Volume: 175 (2010)
    view abstract10.1016/S0167-2991(10)75020-5

    Carbon nanotube (CNT) supported sulfided Rh catalysts were prepared applying three different routes: deposition-precipitation (DP), grafting of colloidal Rh nanoparticles, and polythiophene-assisted synthesis. The catalysts (1.4-1.8 wt%) prepared by DP were synthesized on CNTs from RhCl3 using hydrogen peroxide and subsequent exposure to on-line generated H 2S followed by heat treatment. The Rh particles were found to be highly dispersed on the CNT surface. Alternatively, RhSx/Rh nanoparticles with four different loadings (4.3-21.9 wt%) grafted on carbon nanotubes were prepared through a functionalization of CNTs with short chain thiols and subsequent binding of colloidal Rh nanoparticles onto the thiolated CNTs. All steps of the synthesis were monitored by XPS. Finally, polythiophene/CNT composites were prepared and employed in the preparation of Rh17S15/Rh nanoparticles supported on CNTs. The CNTs with the highest polythiophene loading yielded the highest amount of Rh 17S15 after Rh deposition and thermal treatment. The activity and stability of the prepared catalysts were studied towards the oxygen reduction reaction. © 2010 Elsevier B.V. All rights reserved.

  • 2010 • 19
    Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications
    Schilling, T. and Okunola, A. and Masa, J. and Schuhmann, W. and Bron, M.
    ELECTROCHIMICA ACTA. Volume: 55 (2010)
    view abstract10.1016/j.electacta.2009.11.092

    Composites consisting of multi-walled carbon nanotubes (MWCNTs) and iron-nitrogen containing compounds as catalysts for the electroreduction of oxygen in acidic media were directly prepared on a glassy carbon (GC) electrode in a bottom-up synthesis. In a first step, MWCNTs were drop-coated in form of an ink onto the electrode. Afterwards the nanotubes were modified with catalytically active films of iron porphyrin (FeTMPP-Cl) or iron phenanthroline (Fe(phen)3) through a pulsed potential deposition technique. Finally the prepared electrodes were heat-treated in an inert gas atmosphere. By employing cyclic voltammetry and rotating disc electrode measurements it is shown that the activity for the oxygen reduction reaction (ORR) at such composites increases progressively with every applied synthesis step showing the possibility for direct synthesis of a catalyst on an electrode. The activities of FeTMPP-Cl/MWCNT and Fe(phen)3/MWCNT composites prepared by this technique are higher than that of similar electrocatalysts prepared by wet impregnation and heat treatment. The presented approach opens possibilities for systematic tuning of electrode structures, for example by stepwise build-up of gas diffusion electrodes. © 2009 Elsevier Ltd.

  • 2010 • 18
    Characterization of the effluent of a He/O-2 microscale atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry
    Ellerweg, D. and Benedikt, J. and von Keudell, A. and Knake, N. and Schulz-von der Gathen, V.
    NEW JOURNAL OF PHYSICS. Volume: 12 (2010)
    view abstract10.1088/1367-2630/12/1/013021

    The effluent of a microscale atmospheric pressure plasma jet (mu-APPJ) operated in helium with a small admixture of molecular oxygen (< 1.6%) has been analyzed by means of two independent diagnostics, quantitative molecular beam mass spectrometry (MBMS) and two-photon absorption laser-induced fluorescence spectroscopy (TALIF). The atomic oxygen density, the ozone density and the depletion of molecular oxygen have been measured by MBMS and the atomic oxygen density has been validated by TALIF. Absolute atomic oxygen densities in the effluent up to 4.7x10(15) cm(-3) could be measured with a very good agreement between both diagnostics. In addition, ozone densities in the effluent up to 1.4x10(15) cm(-3) and an O-2 depletion up to 10% could be measured by MBMS. The atomic oxygen density shows a maximum value at an O-2 admixture of 0.6%, whereas the ozone density continues to increase toward higher O-2 admixtures. With increasing distance from the jet, the atomic oxygen density decreases but is still detectable at a distance of 30 mm. The ozone density increases with distance, saturating at a distance of 40 mm. By applying higher powers to the mu-APPJ, the atomic oxygen density increases linearly whereas the ozone density exhibits a maximum.

  • 2010 • 17
    Dissociation of oxygen on Ag(100) induced by inelastic electron tunneling
    Sprodowski, C. and Mehlhorn, M. and Morgenstern, K.
    JOURNAL OF PHYSICS CONDENSED MATTER. Volume: 22 (2010)
    view abstract10.1088/0953-8984/22/26/264005

    Scanning tunneling microscopy (STM) is used to study the dissociation of molecular oxygen on Ag(100) induced by inelastic electron tunneling (IET) at 5 K. This dissociation is possible above 3.3 V with a yield of (3.63 ± 0.47) × 10-9 per electron. Dissociation leads to three different types of hot atom motion: lateral motion, a cannon ball mechanism, and abstractive dissociation. Analysis of the I -t characteristics during dissociation suggests that the dissociation is proceeded by an adsorption site change. © 2010 IOP Publishing Ltd.

  • 2010 • 16
    Rh-RhSx nanoparticles grafted on functionalized carbon nanotubes as catalyst for the oxygen reduction reaction
    Jin, C. and Xia, W. and Nagaiah, T.C. and Guo, J. and Chen, X. and Li, N. and Bron, M. and Schuhmann, W. and Muhler, M.
    JOURNAL OF MATERIALS CHEMISTRY. Volume: 20 (2010)
    view abstract10.1039/b916192a

    Rhodium-rhodium sulfide nanoparticles supported on multi-walled carbon nanotubes (CNTs) were synthesized via a multi-step colloid route. The CNTs were first exposed to nitric acid to generate oxygen-containing functional groups, and then treated with thionyl chloride to generate acyl chloride groups. The grafting of thiol groups was subsequently carried out by reaction with 4-aminothiophenol. Colloidal rhodium nanoparticles were synthesized using rhodium chloride as metal source, sodium citrate as stabilizer, and sodium borohydride as reducing agent. The immobilization of the generated colloidal rhodium nanoparticles was achieved by adding the thiolated CNTs to the colloidal suspension. All these steps were monitored by X-ray photoelectron spectroscopy, which disclosed the presence of rhodium sulfide, whereas metallic rhodium was detected by X-ray diffraction, suggesting that the nanoparticles probably consist of a metallic Rh core covered by a sulfide layer. Scanning and transmission electron microscopy studies showed that the diameter of the catalyst particles was about 7 nm even at high Rh loadings. Rotating disc electrode measurements and cyclic voltammetry were employed to test the electrocatalytic activity in the oxygen reduction reaction in hydrochloric acid. Among all the synthesized catalysts with different rhodium loadings (4.3-21.9%), the 16.1% rhodium catalyst was found to be the most active catalyst. In comparison to the commercial E-TEK Pt/C catalyst, the 16.1% catalyst displayed a higher electrochemical stability in the highly corrosive electrolyte, as determined by stability tests with frequent current interruptions. © 2010 The Royal Society of Chemistry.

  • 2010 • 15
    Pt-Ag catalysts as cathode material for oxygen-depolarized electrodes in hydrochloric acid electrolysis
    Maljusch, A. and Nagaiah, T.C. and Schwamborn, S. and Bron, M. and Schuhmann, W.
    ANALYTICAL CHEMISTRY. Volume: 82 (2010)
    view abstract10.1021/ac902620g

    Pt-Ag nanoparticles were prepared on a glassy carbon (GC) surface by pulsed electrodeposition and tested using cyclic voltammetry and scanning electrochemical microscopy (SECM) with respect to their possible use as catalyst material for oxygen reduction in 400 mM HCl solution. For comparison, a Pt catalyst was investigated under similar conditions. The redox competition mode of scanning electrochemical microscopy (RC-SECM) was adapted to the specific conditions caused by the presence of Cl ions and used to visualize the local catalytic activity of the Pt-Ag deposits. Similarly prepared Pt deposits were shown to dissolve underneath the SECM tip. Pt-Ag composites showed improved long-term stability toward oxygen reduction as compared with Pt even under multiple switching off to open-circuit potential in 400 mM HCl. © 2010 American Chemical Society.

  • 2010 • 14
    Growth of crystalline Gd2O3 thin films with a high-quality interface on Si(100) by low-temperature H2O-assisted atomic layer deposition
    Milanov, A.P. and Xu, K. and Laha, A. and Bugiel, E. and Ranjith, R. and Schwendt, D. and Osten, H.J. and Parala, H. and Fischer, R.A. and Devi, A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. Volume: 132 (2010)
    view abstract10.1021/ja909102j

    (Figure Presented) This work documents the first example of deposition of high-quality Gd2O3 thin films in a surface-controlled, self-limiting manner by a water-based atomic layer deposition (ALD) process using the engineered homoleptic gadolinium guanidinate precursor [Gd(DPDMG) 3]. The potential of this class of compound is demonstrated in terms of a true ALD process, exhibiting pronounced growth rates, a high-quality interface between the film and the substrate without the need for any additional surface treatment prior to the film deposition, and most importantly, encouraging electrical properties. © 2010 American Chemical Society.

  • 2010 • 13
    The formation of methane over iron catalysts applied in Fischer-Tropsch synthesis: A transient and steady state kinetic study
    Graf, B. and Schulte, H. and Muhler, M.
    JOURNAL OF CATALYSIS. Volume: 276 (2010)
    view abstract10.1016/j.jcat.2010.09.001

    The formation of methane over unpromoted and potassium-promoted bulk iron catalysts applied in Fischer-Tropsch synthesis (FTS) was studied by dosing carbon monoxide pulses in hydrogen. A bulk metallic iron catalyst was obtained by H2 reduction, and cementite (Fe3C)-containing but oxygen-free iron was prepared by exposure to methane. The pulse experiments yielded mainly CH4 as well as small amounts of ethane and propane. The potassium-promoted samples reached higher degrees of CO conversion and lower CH4 selectivities. The Fe3C-containing catalysts were found to be more selective towards ethane and propane than reduced ones indicating that Fe3C is more active in FTS than metallic iron. The pulse experiments resulted in different signal shapes of the CH4 response curves reflecting the influence of the potassium promoter. The presence of potassium influenced the formation of CH4 by blocking the fast formation channel and by establishing a new and slower reaction pathway, whereas the addition of potassium did not change the reaction pathway towards higher hydrocarbons. Therefore, the decreasing CH4 formation rate contributes to the decreasing CH4 selectivity with increasing potassium content found under high-pressure steady-state conditions. Pressure variation experiments at steady state revealed that the kinetic results obtained during the pulse experiments were reproduced at 1 bar. Gradual continuous changes in the product distribution were observed with increasing pressure allowing extrapolating the concepts obtained from experiments at atmospheric pressure to industrial high-pressure FTS conditions. © 2010 Elsevier Inc. All rights reserved.

  • 2010 • 12
    Patterned CNT arrays for the evaluation of oxygen reduction activity by SECM
    Schwamborn, S. and Stoica, L. and Chen, X. and Xia, W. and Kundu, S. and Muhler, M. and Schuhmann, W.
    CHEMPHYSCHEM. Volume: 11 (2010)
    10.1002/cphc.200900744
  • 2010 • 11
    Formation, binding, and stability of O-Ag-CO2-Ag-O compounds on Ag(100) investigated by low temperature scanning tunneling microscopy and manipulation
    Hsieh, M.-F. and Li, H.-D. and Lin, D.-S. and Morgenstern, K.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 114 (2010)
    view abstract10.1021/jp104170b

    The understanding of reaction intermediates in heterogeneous catalysis has important implications for the design of novel catalysts. We investigate the adsorption of CO2 on oxygen precovered Ag(100) at low temperature (17 K) by scanning tunneling microscopy and inelastic electron tunneling manipulation at 5 K. On the terraces, the adsorption leads to O-Ag-CO 2-Ag-O compounds with reduced binding of the oxygen to the surface as compared to the separately adsorbed molecules. The compound can be either dissociated into a bistable O-Ag-CO2 compound at 1.6 V, dissociated into its constituents at 2.2 V, or reacted at 6.5 V into a species, which we tentatively attribute to CO3. The thus obtained carbon trioxide or carbonate is an intriguing reaction intermediate, because it is not stable in the gas phase. Our detailed study of coadsorbed species outlines a possibility to investigate precursors of reactions that involve the substrate atoms. © 2010 American Chemical Society.

  • 2010 • 10
    Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium
    Nagaiah, T.C. and Kundu, S. and Bron, M. and Muhler, M. and Schuhmann, W.
    ELECTROCHEMISTRY COMMUNICATIONS. Volume: 12 (2010)
    view abstract10.1016/j.elecom.2009.12.021

    A new approach to synthesize nitrogen-doped carbon nanotubes (NCNTs) as catalysts for oxygen reduction by treating oxidized CNTs with ammonia is presented. The surface properties and oxygen reduction activities were characterized by cyclic voltammetry, rotating disk electrode and X-ray photoelectron spectroscopy. NCNTs treated at 800 °C show improved electrocatalytic activity for oxygen reduction as compared with commercially available Pt/C catalysts. © 2009 Elsevier B.V. All rights reserved.

  • 2009 • 9
    Visualization of the local catalytic activity of electrodeposited Pt-Ag catalysts for oxygen reduction by means of SECM
    Nagaiah, T.C. and Maljusch, A. and Chen, X. and Bron, M. and Schuhmann, W.
    CHEMPHYSCHEM. Volume: 10 (2009)
    view abstract10.1002/cphc.200900496

    Pt-Ag nanoparticle co-deposits with different Pt-Ag ratios were prepared on a glassy carbon (GC) surface by pulsed electrodeposition and investigated for their catalytic activity in electrocatalytic oxygen reduction by using cyclic voltammetry (CV), rotating disc electrode (RDE) and scanning electrochemical microscopy (SECM) in 0.1 M phosphate buffer (pH 7.0). The atomic composition of the Pt-Ag co-deposits was studied by means of energy-dispersive X-ray analysis (EDAX). In combination with X-ray diffraction (XRD), the presence of partly alloyed Pt and Ag on the GC surface was confirmed. Scanning electron microscopy (SEM) images indicate that the prepared Pt-Ag catalyst particles are homogenously dispersed over the GC surface. Their size and morphology depend on their composition. The electrocatalytic activity of Pt-Ag deposits with high Pt content was the highest, exceeding even that of electrodeposited Pt as evaluated by quantitative RDE analysis. The redox competition mode of scanning electrochemical microscopy (RC-SECM) was successfully used to visualize the local catalytic activity of the deposited Pt-Ag particles. Semi-quantitative assessment of the SECM results confirmed the same order of activity of the different catalysts as the RDE investigations. © 2009 Wlley-VCH Verlag GmbH & Co. KGaA,.

  • 2009 • 8
    Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM)
    Okunola, A.O. and Nagaiah, T.C. and Chen, X. and Eckhard, K. and Schuhmann, W. and Bron, M.
    ELECTROCHIMICA ACTA. Volume: 54 (2009)
    view abstract10.1016/j.electacta.2009.02.047

    The redox competition mode of scanning electrochemical microscopy (RC-SECM) has been utilized to visualize the local electrocatalytic activity of metalloporphyrin spots towards oxygen reduction in 0.1 M phosphate buffer as electrolyte solution. The metalloporphyrin spots were obtained by electrochemically induced deposition using a droplet cell. Tetratolyl porphyrins (TTPs) of Mn, Fe and Co have been investigated, with that containing Mn as central metal atom showing highest catalytic activity. The multiple stable oxidation states of Mn were seen as a key factor in the influence of the metal ion on the catalytic activity. From the RC-SECM results, it is shown that oxygen reduction at a manganese TTP (MnTTP) modified electrode surface yielded the least amount of H2O2 when compared to iron TTP (FeTTP) and cobalt TTP (CoTTP). As further confirmed by means of rotating disc electrode (RDE) measurements this was attributed to the high activity of MnTTP for H2O2 reduction. © 2009 Elsevier Ltd. All rights reserved.

  • 2009 • 7
    A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor
    Xia, W. and Jin, C. and Kundu, S. and Muhler, M.
    CARBON. Volume: 47 (2009)
    view abstract10.1016/j.carbon.2008.12.026

    A simple, highly effective method for the functionalization of CNTs with HNO 3 vapor is developed, thus eliminating separation by filtration. A significantly higher amount of oxygen species compared to conventional wet HNO 3 treatment was detected by X-ray photoelectron spectroscopy, and the morphology and the degree of agglomeration did not deteriorate because of the treatment. © 2008 Elsevier Ltd. All rights reserved.

  • 2009 • 6
    Removal of model proteins using beams of argon ions, oxygen atoms and molecules: Mimicking the action of low-pressure Ar/O2 ICP discharges
    Kylián, O. and Benedikt, J. and Sirghi, L. and Reuter, R. and Rauscher, H. and Von Keudell, A. and Rossi, F.
    PLASMA PROCESSES AND POLYMERS. Volume: 6 (2009)
    view abstract10.1002/ppap.200800199

    The action of Ar/O2 plasmas with proteins is mimicked by employing a particle beam experiment with individually controllable and absolutely calibrated sources of O atoms/O2 molecules and of argon ions. It is demonstrated that beams of thermal O atoms and of O2 molecules with fluences up to jo= 8.6×1018 cm-2 and jo2= 5.4×1020 cm-2 have no measurable effect on the proteins at room temperature, whereas the combination of an O/O2 beam and of an 100 eV Ar+ ion beam induces very efficient protein removal, which is accompanied by a significant increase of their surface roughness. These observations are attributed to the process of chemical sputtering caused by the simultaneous impact of incident radicals and energetic ions. A figure is presented. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2009 • 5
    On the role of the thermal treatment of sulfided Rh/CNT catalysts applied in the oxygen reduction reaction
    Jin, C. and Xia, W. and Nagaiah, T.C. and Guo, J. and Chen, X. and Bron, M. and Schuhmann, W. and Muhler, M.
    ELECTROCHIMICA ACTA. Volume: 54 (2009)
    view abstract10.1016/j.electacta.2009.06.095

    Low loading sulfided rhodium catalysts supported on carbon nanotubes (CNTs) were prepared from RhCl3 by deposition-precipitation using hydrogen peroxide, followed by an exposure to hydrogen sulfide and an additional thermal treatment in the range from 400 °C to 900 °C. Hydrogen sulfide was generated online from hydrogen and sulfur vapor over molybdenum disulfide as catalyst. By elemental analysis, the Rh loading of the prepared catalysts was found to be 1.4-1.8 wt%. Morphology and composition of the resulting catalysts were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and X-ray photoelectron spectroscopy (XPS). Nanoparticles were found to be highly dispersed on the CNTs with an average diameter as small as 1.0 nm determined by TEM. Sintering occurred during heat treatments at 650 °C and 900 °C in helium, as evidenced by XRD, TEM, and XPS. The treatment with hydrogen sulfide significantly enhanced the activity of the supported rhodium catalysts for the oxygen reduction reaction (ORR) in hydrochloric acid, as determined by rotating disc electrode measurements. The sulfided catalyst annealed at 650 °C with a particle size of about 2.5 ± 1.0 nm showed the best performance for the ORR, which is discussed based on the presence of a more stable rhodium sulfide layer on the metallic rhodium particles. © 2009.

  • 2009 • 4
    Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies
    Strunk, J. and Kähler, K. and Xia, X. and Comotti, M. and Schüth, F. and Reinecke, T. and Muhler, M.
    APPLIED CATALYSIS A: GENERAL. Volume: 359 (2009)
    view abstract10.1016/j.apcata.2009.02.030

    Gold catalysts supported on zinc oxide with Au loadings of 1, 2, and 3 wt% were prepared by the colloidal deposition method and applied in methanol synthesis in CO2-free (CO + H2) and in CO2-containing (CO + CO2 + H2) synthesis gas. The characterization by transmission electron microscopy and X-ray diffraction before and after the catalytic high-pressure tests demonstrated a very narrow and uniform Au particle size distribution and a high stability against sintering. Reactive frontal chromatography (RFC) experiments with N2O were performed aiming at the titration of oxygen vacancies. With increasing Au loading, the amount of consumed N2O increased in good correlation with the number of Au perimeter atoms present in the Au/ZnO catalysts suggesting an enhanced formation of oxygen vacancies at the Au/ZnO interface. In both synthesis gas mixtures the presence of the Au particles led to an increased activity compared with pure ZnO. All Au/ZnO samples exhibited higher catalytic activity in the absence of CO2, as had been observed for pure ZnO with similar apparent activation energy. It is concluded that oxygen vacancies in ZnO are also the active sites in methanol synthesis over Au/ZnO, and that the presence of the Au particles enhances the number of exposed oxygen vacancies in ZnO, presumably located at the interface region. © 2009 Elsevier B.V. All rights reserved.

  • 2009 • 3
    Hard repulsive barrier in hot adatom motion during dissociative adsorption of oxygen on Ag(100)
    Hsieh, M.-F. and Lin, D.-S. and Gawronski, H. and Morgenstern, K.
    JOURNAL OF CHEMICAL PHYSICS. Volume: 131 (2009)
    view abstract10.1063/1.3258849

    Random pairing simulation and low temperature scanning tunneling microscopy (STM) are used to investigate the detailed O2 dissociative adsorption processes at 200 K for various coverages. The distribution of oxygen adatoms shows a strong repulsion between the adsorbates with a radius of ∼0.8 nm. The comparison between STM results and simulation reveals two prominent pairing distances of 2 and 4 nm and their branching ratio is about 2:1. These findings shed new light on the origin of the large intrapair distances found and on the process behind the empirical "eight-site rule." © 2009 American Institute of Physics.

  • 2009 • 2
    Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes
    Okunola, A. and Kowalewska, B. and Bron, M. and Kulesza, P.J. and Schuhmann, W.
    ELECTROCHIMICA ACTA. Volume: 54 (2009)
    view abstract10.1016/j.electacta.2008.07.077

    The electrocatalytic reduction of oxygen at electropolymerized films of a number of different manganese, iron and cobalt porphyrins supported on multi-walled carbon nanotubes (MW-CNTs) which have been pre-stabilized with ultra-thin layers of organic 4-(pyrrole-1-yl) benzoic acid (PyBA) is reported. Special emphasis has been on the multiple oxidation states of manganese as central metal ion and its potential advantages for the electron transfer process during the reduction of molecular oxygen in a 0.1 M phosphate buffer solution. Electropolymerization of metal porphyrins leads to catalytically active films on the electrode. The incorporation of MW-CNTs in the film leads to a significant decrease in the hydrogen peroxide produced during the oxygen reduction reaction (ORR) and a significant positive shift of the oxygen reduction potential. Of the complexes studied, manganese tetratolyl porphyrin (MnTTP) has shown the best activity and stability towards oxygen reduction. © 2008 Elsevier Ltd. All rights reserved.

  • 2009 • 1
    Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction
    Kundu, S. and Nagaiah, T.C. and Xia, W. and Wang, Y. and Van Dommele, S. and Bitter, J.H. and Santa, M. and Grundmeier, G. and Bron, M. and Schuhmann, W. and Muhler, M.
    JOURNAL OF PHYSICAL CHEMISTRY C. Volume: 113 (2009)
    view abstract10.1021/jp811320d

    Nitrogen-containing carbon nanotubes (NCNTs) were prepared via pyrolysis of acetonitrile over cobalt catalysts at different temperatures to control the nitrogen content. The changes in the chemical and structural properties of undoped CNTs and NCNTs were investigated using high-resolution X-ray photoelectron and Raman spectroscopy. The NCNTs prepared at 550 °C had a higher amount of pyridinic groups and edge plane exposure than the ones prepared at 750 °C. The thermal stability and transformation of these nitrogen functional groups was studied using deconvoluted XP N 1s spectra. The NCNTs show a considerably higher activity in the oxygen reduction reaction in acidic electrolyte compared with undoped CNTs as demonstrated by cyclic voltammetry, rotating disk electrode measurements, and the redox-competition mode of scanning electrochemical microscopy (RC-SECM). Particularly, the NCNT sample prepared at 550 °C exhibited the highest activity, which was about 1 order of magnitude lower than that of a commercial Pt/C sample containing 20 wt % Pt. The oxygen reduction reaction (ORR) performance of this sample showed hardly any signs of deterioration after 3 days, as determined by voltammetric stability tests in H2SO4. © 2009 American Chemical Society.

Logo RUB
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

SOCIAL MEDIA

  • LinkedIn
Seitenanfang Kontrast N
  • LinkedIn